# Performance of SPL cavities at CERN

#### **Alick Macpherson**

#### on behalf of **CERN BE-RF-SRF Cavity Reception and Warm Test Team** Sarah Aull, Nuria Alonso, Leonel Ferreira, Alain Grimaud, Phoevos Kardasopoulos, Szabina Herveth Mikulaa, Kai Danka, Francoia Dillon, Elias Vernier, Nuria Alonso,

Szabina Horvath-Mikulas, Kai Papke, Francois Pillon, Elise Vernier, Nuria Alonso, Leonel Ferreira, Karl Schirm

#### **CERN BE-RF-SRF SM18 Cavity Cold Testing Team**

Antoine Benoit, Karim Hernandez Chahin, Max Gourragne, Tobias Junginger, , Aurelien LahuPierre Maesen, Gabriel Pechaud, Benedikt Peters, Maria Navarro Tapia, Mathieu Therasse, Roberto Torres

# Introduction: CERN SRF activities and SPL

- Objective:
  - Characterise SPL Nb 5-cell cavities at warm
  - Setup and test SPL Nb 5-cell cavities in SM18 vertical cryostat
  - Ensure diagnostics + analysis tools in place for full evaluation of test data
- Objective
  - Ensure infrastructure for production level testing
  - Development of personnel, procedures and techniques
- Plan
  - Use SPL Nb Monocell and SPL Copper 5-cell cavities to meet development objectives
- Plan
  - Be ready to launch SPL Nb 5-cell cold test at SM18 by mid 2014.

## Cavity Reception and Warm testing lab

- Set up for reception and testing of Cavities: HIE-Isolde, Crab, SPL, + ...
  - Cavity reception and leak testing
  - Optical Inspection
  - Bead Pull Measurements
  - SPL Tuning Bench
  - SPL Tuner Test
  - RF Measurements





# SPL: RF Cold Testing

- SPL RF Cold testing: SM18 RF Facility
  - Vertical Tests: SM18 V3 Cryostat
    - ~3300 litre Cryostat: 1.8K operating temperature
  - V3 Control Software: Finishing full code review process
  - Horizontal Tests: M7 Bunker
    - Refurbishment of cryogenics distribution ongoing



HC, REES

# Cold Test Diagnostics

- Quench Detection: OSTs and second sound
  - OSTs were successfully deployed for SACLAY SPL & UK 4-Rod Crab tests
  - Now upgrading readout system for SPL 5-cell tests







- Temperature Monitoring
  - Calibrated Allen Bradley resistors with LHC-based PLC acquisition
  - Upgrading to Ruthenium Oxide sensors: SMD sensors on pogo-sticks
- Temperature Mapping
  - Prototype test: Developing flexible sensor grid to with RuO<sub>2</sub> sensors







# SM18 1.8K Teststand: V3 Vertical Teststand



### SM18 1.8K Teststand: V3 Vertical Teststand Reality



-3.49864E+8

EXI

MHz

ms



<u>File Edit View Project Operate Tools Window Help</u>

#### SPL β=1 Nb Monocell: Cold Test

- SPL Nb Monocell: A "Test" cavity. Validation of assemby & procedures
  - Tested at SM18 Vertical cryostat: Measured at 4.5K, 2.4K and 1.8K
  - $Q0 = 1.7 \ 10^{10}$  at 1.8K  $G=270 => R_Residual = 14.5nOhms$

#### SPL β=1 Nb Monocell: Cold Test

- SPL Nb Monocell: A "Test" cavity. Validation of assemby & procedures
  - Tested at SM18 Vertical cryostat: Measured at 4.5K, 2.4K and 1.8K
  - $Q0 = 1.7 \ 10^{10}$  at 1.8K
- $E_{acc} \sim 15 MV/m$  at Q0=1x10<sup>10</sup>
  - No thermal treatment
- Limitation in performance dictated by field emission
- No evidence of quenching  $\vec{\sigma}$



G=270 => R\_Residual =14.5nOhms



## SPL $\beta$ =1 Monocell: Post Cold Test Inspection





Figure 12.46: Electron trajectories in a 1.5-GHz single-cell cavity, emitted at intervals of 1/200th of the rf cycle. The trajectories lie in the  $\rho$ -z plane of the cmitter.  $E_{\rm pk} = 17.38$  MV/m and the emission energy is 0 eV.



# SPL $\beta$ =1 Monocell: Post Cold Test Inspection

#### Scratches



- Scratches at Equator:
  - Pre-date EB welding. Direction varies

#### Surface roughness



 Regions of different surface roughness and scouring direction

#### Pinholes



• Pinholes Observed near the equator.





### Cavity Preparation for SM18 Cold Test

# Cavity Preparation for SM18 Cold Test

- Cold test of 1st SPL Nb 5-cell: Expected in June 2014
- Preparations ongoing
  - Measurement of Cavity at 300K
    - RF measurements, Field Flatness etc
  - Preparation of cavity surface
    - Electro polishing, thermal treatment, 120° C bake
  - Preparation of cryostat insert
    - OSTs + temperature & environmental monitoring.
  - Upgrade of diagnostics and test stand software
    - Both CW and Pulse mode operation
- Training of Cavity Testing Team well advanced
  - Teams for both warm and cold measurements







# **RF** Measurements - Field Distribution

• Bead-pull measurements in comparison with simulations to identify modes and their field distribution at the center axis



# $\pi$ -Mode Frequency Validation of SPL Nb 5-Cell



~600 kHz frequency shift due to hard electro-polishing. agrees with expectation from simulation

## π-Mode Frequency Validation: Assembled cavities

- Assembly Process
  - Dumb-bells trimmed so that final cavity assembly had correct length
  - Assembled cavity required to  $\pi$ -mode frequency within specification
    - Tuning performed at manufacturer after assembly.

 $\pi$ -mode frequency and deviation specificationvalue of 704.043 ± 0.07 MHz. Values corrected to an evacuated cavity at 22 °C

|                      | SPL1     |        | SPL2     |        | SPL3     |        | SPL4     |        |
|----------------------|----------|--------|----------|--------|----------|--------|----------|--------|
| Measurement phase    | f        | Δ      | f        | Δ      | f        | Δ      | f        | Δ      |
| At RI before tuning  | 703.608  | -0.435 | 703.823  | -0.220 | 703.775  | -0.268 | 703.768  | -0.275 |
| At RI after tuning   | 704.024  | -0.019 | 704.045  | 0.002  | 704.044  | 0.001  | 704.041  | -0.002 |
| At CERN at arrival   | 704.044  | 0.001  | 704.032  | -0.011 | 704.045  | 0.002  | 704.046  | 0.003  |
| Cavity length in mm  | L        | ΔL     | L        | ΔL     | L        | ΔL     | L        | ΔL     |
| Spec.: 1397.3 mm ± 3 | 1395.886 | 1.414  | 1393.831 | 3.469  | 1395.592 | 1.708  | 1395.229 | 2.071  |

#### 5-cell: Field Flatness



Frequency in MHz Relative Electric Field Amplitude 0.98 SPL3 0.97 SPL4 0.96 0.95 ∟ −200 0 200 400 600 800 1000 1200 1400

701.968

701.973

701.978

701.983

701.988



- Field Flatness Measurement
  - Phase method (transmission)
  - 28 s sweep time (100 Hz IFBW)
  - Bead: Dielectric, 5mm diameter
  - Position Resolution: 0.8 mm

| Measured field flatness in % |       |      |       |       |  |  |  |  |  |
|------------------------------|-------|------|-------|-------|--|--|--|--|--|
|                              | SPL1  | SPL2 | SPL3  | SPL4  |  |  |  |  |  |
| RI: Before tuning            | 14.98 | 50.6 | 15.97 | 51.14 |  |  |  |  |  |
| RI: After tuning             | 1.92  | 0.70 | 1.72  | 1.10  |  |  |  |  |  |
| Required tuning              | 10    | 8    | 5     | 6     |  |  |  |  |  |
| CERN: after delivery         | 1.70  | 3.26 | 1.99  | 1.25  |  |  |  |  |  |
| CERN: after delivery         | 0.03  | 0.18 | 0.07  | 0.39  |  |  |  |  |  |

**Field Flatness Specification < 2.5%** 

# Nb 5-cell: Electropolishing



## Nb 5-cell: Field flatness and wall thickness after EP

- Field Flatness measured after EP
  - Symmetric drop in Electric field at outer cells
  - E\_field profile consistent with increased material removal at centre cell
    - Suggests increased inter-cell coupling at iris of centre cell



### Nb 5-cell: Field flatness and wall thickness after EP

- Field Flatness measured after EP
  - Symmetric drop in Electric field at outer cells
  - E\_field profile consistent with increased material removal at centre cell
    - Suggests increased inter-cell coupling at iris of centre cell





- Ultra-sound Thickness cross check
  - Cavity thickness measured by ultrasound technique
  - Measured before EP, after 100um EP, and after cavity rotated and another 100um removed

#### Inspection before and after electro-polishing: ~200um removed

Equator weld defects

Surface Objects

Scratch on Iris















#### General Surface







New features imply modification of EP program, in order to suppress them

Suspicion: observed features related to vertical EP stand and size of cavity

# SPL Nb 5-Cell: Thermal Treatment



#### 5-Cell Tuner Test Preparations



# SPL Tuning Bench

#### Tuning Bench Status:

- Retooling required as bench could not deliver sufficient plastic deformation
- Retooling is finishing: Validation expected in June



# Summary Comments

- Infrastructure for RF testing of SPL Nb 5-cell cavities is converging
  - Realities of procedure for cavity preparation being worked out.
  - Test of SPL Nb 5-cell: On target for cold test starting late June 2014.
- Technical training and technical expertise for SPL RF testing is in place
- SPL Monocell: An excellent test cavity
  - Successfully used as prototype: not foreseen as a high performance cavity.
  - Cold test limited by field emission
- SPL Nb 5-cell cavities (as received) are mostly within RF specification
- Electro-polishing process
  - Attention needed regarding pinholes and "channel" features
- Validation activities with SPL Nb cavities for tuning bench (plastic deformation) and tuner (elastic deformation) starting