

The Cold Chopper spectrometer of the ESS

Agenda:

- 13:00 13:15 Aims of the ICEB. (PD)
- 13:15 13:30 CSPEC Overview and components reminder. In scope / future plans. (PD)
- 13:15 14:30 Project update: (Overview of project, schedule & budget)) (CSPEC/ESS) (FM)
- 14:20 15:40 Installation (FM)
- 15:40 16:00 Risks (FM)
- 14:30 15:00 DMSC, data management. (JT)
- 15:00 15:20 Sample environment (DN)
- 16:00 16:30 Discussion, actions, decision on risks, issues to follow up.

Aim:

Provide an overview of the project (inclusive of risks) to partners.

Time decisions.

Costing decisions.

(PD) SS) (FM)

TUM: W. Lohstroh LLB: S. Longeville

EUROPEAN SPALLATION SOURCE

The Cold Chopper spectrometer of the ESS

Quasielastic scattering:

- Translational dynamics
- **Diffusive dynamics**
- Rotational dynamics

Chem. Soc. Rev., 2012, 41, 6778-6786

Materials: Glass forming, liquid dynamics, crystal growth, hydrogen storage, fuel cells. Soft matter: Polymer nanocomposites, organic photovoltaics, polymer electrolytes Biology: hydration water, protein structure-dynamics-function, cell membrane-protein, drug delivery Chemistry: ionic liquids, clays, complex fluids

- Low lying energy modes:
- Spin dynamics
- Critical scattering
- Collective excitations
- Quasiparticles

Magnons, phonons, polarons Topological states of matter: Majorana fermions. RVB states, Quantum spin liquids, emergent behaviour.

CSPEC: enable the study of low lying excitations of materials with a focus on in-operando/kinetic behaviour. Need 10-50x current day signal to noise to perform adequately

- •The cold chopper spectrometer of the ESS (2 20 Å).
- Cold neutrons (2-20 Ang) with $\Delta E/E = 1.5 \% @ 4 Å$ (Ei, $\Delta E = \infty < E_i < 0.2E_i$).
- •Focus flux on range of sample areas $4 \times 2 \text{ cm}^2 \rightarrow 1 \times 1 \text{ cm}^2$.
- Signal to noise = 10^5 (@5 Å, Vanadium).
- •Detector will provide angular range of $-30 < 2\theta < 140^{\circ}$ in the horizontal plane and $+/-26.5^{\circ}$ in the vertical plane with a planar sample to detector distance = 3.5 m.
- Enhanced sample environment : in-situ/kinetic phenomena. < 1 min resolution.
- •Multiple characterisation techniques.
- Much improved coupling of neutron scattering with theory.
- •Polarisation analysis.

EUROPEAN SPALLATION SOURCE

The Cold Chopper spectrometer of the ESS

ESS April 2020

EUROPEAN SPALLATION SOURCE

 $8 \text{ Å} = E_{\text{min}} = 1.06$, $E_{\text{max}} = 1.58 \text{ meV} - \text{Add pulses when possible} - gain in flux$

The Cold Chopper spectrometer of the ESS

(2) 160 m & cold neutrons & spallation source = less noise . S/N 10^{5} .

Cold neutrons: S-Bender

No ambient background

Fast and epithermal neutron dose rate (E > 1 eV) limited to within bunker F. Gruna Assume 5 MW. All choppers and shutters open.

12.1.1. Region between bunker wall and cf wall

Fig. 130: Vertical area through the Monte Carlo model of the CSPEC guide shielding between the bunkerwall and the cf-wall for which the radiation distribution is shown in the figure below.

Fig. 131: Fast and epithermal neutron dose rate (source neutrons E>1eV). The red line is the 1.5μSv/h border.

F. Grunauer : MCNP6 simulations

The Cold Chopper spectrometer of the ESS Advantages of Reactor and Spallation source chopper spectroscopy

(3) Cleantime of flight pulses. $\Delta E/E = 1.5 \% @ 4 Å (Ei, \Delta E = \infty < E_i < 0.2E_i)$

Linewidth extracted on a reactor source. (Chopper blades)

Linewidth extracted on a short pulse spallation source. Carpenter function

Information of interest. (QENS)

CSPEC: Clean symmetric pulses.

4 time (ms)

Perform in-operando studies on the < minute timeframe. Probe time dependent phenomena

lonic transport: determines the efficiency of fuel cells & batteries. Improvement of ion conductivity imperative to improve efficiencies:

Batteries & fuel cells Ionic transport under real conditions Next generation energy supplies.

Gas storage & catalysis Transient stages during hydrogen uptake and release, in a gas atmosphere, are difficult to address. In-operando kinetics:second - hour. S. Yand, et al. Nature Chemistry, 2012, 4, 887-894

RTDinfo

Life science & pump probe measurements:

Correlations between the light harvesting processes of a pigment/protein complex involved in photosynthesis and its internal dynamics.

Small single crystals: High quality, few imperfections. High pressure synthesis: not easily observed in nature. Study many stoichiometries in a single experiment. True global behaviour.

Functional materials:

Develop novel phases as a function of pressure (0 - 9 GPa) Need samples as small as 1 mg (currently 500 mg is feasible). Important energy implications

Strongly correlated physics:

High pressure, high magnetic field (at least 12 T) and low temperature (T < 0.1 K) simultaneously. Out of equilibrium physics (Pulsed fields,) Spintronics & Spin liquids \Rightarrow quantum computing

7 GPa : W.G. Marshall (ISIS) S. Klotz, High Press. Res. (2013)

Large ticket items in-going/finalised:

- •Guide : TUM in production, NBOA, BBG, Feedthrough under detailed design.
- •Choppers: Tender out (LLB).
- Primary spectrometer shielding, TG3 complete.
- •Vacuum housing: out of bunker, CTV Vacuum housing: in bunker, CTV July 2020.
- •Detector tank CTV: Tender process started (LLB).

EUROPEAN SPALLATION SOURCE

Radial

Focus now:

- •Radial collimator: design complete \rightarrow tender.
- •TOF chamber collimation

•Slits.

- Secondary spectrometer shielding (inclusive of beam stop).
- •Monitors: ESS common project.
- •Detectors: ESS/CSPEC project.
- •Guide exchanger: on-going.
- •Control Cabin.
- •Sample environment (Daria): on-going.
- •Data acquisition / DMSC: more focus.
- •MCA/Vacuum/electrical/Hazard analysis/PSS

18 detector modules at 100 % front end electronics grid. Cost risk is transferred from CSPEC to NSS project. (4 277 753 euros) Hand over of project is December 2022. Project accountability / well defined milestones

EUROPEAN **SPALLATION** SOURCE

	Requirements
ime-of- asured at	Shall be ≤ 2.5 times ³ He detectors (essential)
	Should be equivalent to ³ He detectors (desirable)
	Shall be \ge 60% detection efficiency at 4Å
from the	Shall be $5^{\circ} \le 2\theta \le 97.7^{\circ}$ in the horizontal plane
	Shall be $\pm 26.5^{\circ}$ in the vertical plane
	Shall be 50 times > ³ He detectors
	Should be 100 times > ³ He detectors
	Shall be < 0.35 Hz/m ² (essential)
	Should be < 0.14 Hz/m ² (desirable)
tron	Shall be 10⁴ at 5Å (essential)
ent npared to	Should be ~10⁵ at 5Å (desirable)
nsity at a	
	Shall be $\leq 10^{-6}$

Short description				
Tenders/Requests For Quotations				
RFQs) for key components submitted				
Sub-TG3: Grid design, Vessel design				
Key Components delivered to Suppliers				
Tender for Vessels submitted				
¹⁰ B₄C Coating for MG.CSPEC Started				
Pilot Tests completed				
¹⁰ B ₄ C coated blades for 1 st Detector completed				
Construction of CSPEC Detectors started.				
1 st Detector Vessel FAT				

#5

#6

#7

#8

#9

The Cold Chopper spectrometer of the ESS

MG B10 Detectors: Pilot tests (LET/ISIS)

Pilot Tests completed	Nov 20	Subject to access to LET is granted in Sep 2020	
Table 1. Essential CSPEC detector performation	nce requiremen	its.	
Specification Description	Requirements		
Linewighth interactive as a function of time of	Chall ha < 2 E time	as ³ Us detectors (acceptial)	

Linewidth, intensity as a function of time-offlight for an incoherent scatterer, measured at 2K, in the region $3\sigma < \lambda < 5\sigma$ Shall be ≤ 2.5 times ³He detectors (desirable) Should be equivalent to ³He detectors (desirable)

STAP Meeting, ESS, Lund, 7th October 2019

EUROPEAN SPALLATION SOURCE

The Cold Chopper spectrometer of the ESS

ESS CSPEC

Shielding: F. Grunauer.

(1) Instrument shutter to access PS chopper & sample pot.

The Cold Chopper spectrometer of the ESS

Shielding: F. Grunauer.

(2) Primary spectrometer

Assumptions

The spallation source is running at 5MW with 2GeV proton All choppers and shutters are opened.

Steel (inner layer) & ordinary concrete (166cm outside the bunker wall + heavy concrete). Consider vacuum housing & guide realities.

PS chopper pit: + 1.5 cm Jefferson Lab materials : boron carbide + cement

Fig. 115: Cuts through the tally area

@ 30 m from moderator

PS Chopper pit @ 105.67 m

The Cold Chopper spectrometer of the ESS

Shielding: F. Grunauer.

(2) Secondary spectrometer Analytical calculations to date MCNPX Calculations shortly

 $E_i = 1.81 \text{meV}$

-0.4

E=3.84meV

-2

-0.2

0

E(meV)

E(meV)

Intensity (arb.units)

10

Intensity (arb.units)

D=0.52Å⁻¹

oh+inc

0.2

0.4

O=1.95Å-1

coh+inc

0.6

 $\tau(ps)$

0.4 0.5 0.6

0.8 Q(Å-1)

PHYSICAL REVIEW RESEARCH 2, 022015(R) (2020)

3.2 3.4 3 1000 / T(K)

295K

Coherent structural relaxation of water from meso- to intermolecular scales measured using neutron spectroscopy with polarization analysis

Arantxa Arbe[®],¹ Gøran J. Nilsen[®],² J. Ross Stewart[®],² Fernando Alvarez[®],^{1,3} Victoria García Sakai^{10,2} and Juan Colmenero^{1,3,4,*} ¹Centro de Física de Materiales (CFM) (CSIC–UPV/EHU)–Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain

PA provides an accurate description of S_{coh} (Q, ω) below Q_{max} Study coherent scattering from meso- to intermolecular scales in H-bonded liquids, glass forming liquids, biological systems (water)

> CSPEC; Future proof for PA Exchangeable guide piece for Polariser/Flipper Non-magnetic tank $\mu r < 1.01$, d > 1.45 m Non magnetic guides post M chopper He3 polarisation when possible.

<u>Control</u>, DAQ, reduction and a brief outline of analysis envisaged

Control (Cold commissioning - April 2022):

Control of choppers, focussing nose, gate valve, slits, collimator, rotation stage/s. Control of Sample Environment when experiment is running/ not running Time stamp essential (linked to ESS baseline timestamp) Control by graphical user interface (GUI) and command line (CL) Flippers for PA.

Monitoring (Cold commissioning - April 2022):

(not directly part of DMSC but some parameters will be required within dataset): Choppers parameters (pressure, water flow, heat) Detector tank pressure ...

The Cold Chopper spectrometer of the ESS

Data Acquisition (some in cold commissioning)

- •Timestamp/position (event mode)
- Monitors (not event mode)
- •Multigrid detector technology = $(1.0x2.5x2.5 \text{ cm}^3)$
- •3rd dimension can give further vital information.

LET tests

- •Will test detector, not electronics
- Mesytec / not VMM

Reduction (Cold/Hot commisioning (June 2021)):

- Data live visualisation (< minute scale), ideally with a direct link to some initial theory.
- Quick transformation to determine E/Q resolution/ large data arrays (error prop)
- Understand background contributions
- Multiple scattering contributions
- From timestamp/position transformed to self and collective intermediate
- scattering functions I(Q, t) sand/or the self correlation function S(Q,w),
- transformed to $\Sigma S(Q, w)$ for all RRM if possible.
- easy E/Q cuts

Figure 1: Left: Depiction of cryostat/sample model. Center: Time of flight banana monitor showing spurions. Right: Histogram over scattering locations in cryostat as seen from above.

Mads Bertelsen McStas.

The Cold Chopper spectrometer of the ESS

Data analysis (Cold/Hot commissioning):

• Basic models for (e.g.) self-diffusion :

Ficks law

Chudley-Elloitt (CE) – jumps on a lattice

Singwi-Sjölander (SS)- alternation between oscillatory motion and directed motion Hall-Ross (HR) – jump diffusion within a restricted volume

- Molecular Dynamics simulations i.e. VASP (DFT)
- SpinW
- McPhase
- SPINVERT
- Close collaborations with Lund/Stockholm University
- Ensure to incorporate instrumental resolution/ transmission profile
- McStas simulation of sample environment.

BUDGET

Proposal June 2018	3					
					Actual + guess	ov 2019
Budget Proposal CSPEC		TUM [kEUR]	LLB [kEUR]	Total [kEUR]	TUM [EUR]	LLB (EUR)
Optics				2614		
	in-pile, NBOA	120			149 035,00 €	Lots of ex
	BBG	20			- €	Negleate
	in bunker guide	185			- €	_ivegiecie
	bunker feedthrough	140			230 330,00 €	Vacuum
	out-of bunker guide	1300			1 574 543,00 €	vacuum
	guide exchange	150			150 000,00 €	Cu auida
	guide housing and piles	600			700 000,00 €	
	installation	99			-€	
Choppers				1480		
			1480			2 000 000,00 €
PSS				100		
		50	50		50 000,00 €	50 000,00 €
Shutter						
		20		20	20 000,00 €	
Beam Monitors				70		
		70			70 000,00 €	
Shielding				1996		
	Guide/ Halls		1129			1 181 000,00 €
	Detector Cave		867			625 000,00 €
Detector + Sample				6147		
	Detector Vaccum tank		1156			2 000 000,00 €
	Sample environement		375			375 000,00 €
	Radial collimator		200			100 000,00 €
	detectors	3474	942		3 914 420,00 €	363 333,00 €
Infrastructure				100		
	Instrument hutch		100			100 000,00 €
Manpower				2323		
		1197	1126		1 197 000,00 €	1 126 000,00 €
Contingency				1650		
		825	825		194 672,00 €	329 667,00 €
Total		8250	8250	16500	8 250 000.00 £	8 250 000.00 £

tra details not included. d: electrical work, MCA underestimated, nousing cost underestimated housing underestimated. (20-30% more).

The Cold Chopper spectrometer of the ESS

Agenda:

- 13:00 13:15 Aims of the ICEB. (PD)
- 13:15 13:30 CSPEC Overview and components reminder. In scope / future plans. (PD)
- 13:15 14:30 Project update: (Overview of project, schedule & budget)) (CSPEC/ESS) (FM)
- 14:20 15:40 Installation (FM)
- 15:40 16:00 Risks (FM)
- 14:30 15:00 DMSC, data management. (JT)
- 15:00 15:20 Sample environment (DN)
- 16:00 16:30 Discussion, actions, decision on risks, issues to follow up.

Aim:

Provide an overview of the project (inclusive risks) to partners.

Time decisions.

Costing decisions.

(PD) SS) (FM)