

EUROPEAN SPALLATION SOURCE

Heimdal Instrument @ ESS IKON September 2020 Dan Mannix

Lead Scientist Heimdal Instrument ESS, Lund Sweden

ESS 2020 - September 2020

The Heimdal Team

EUROPEAN SPALLATION SOURCE

Isabel Llamas (IFE) choppers

35%

Institute for Energy Technology

Bjørn Hauback Lead in-kind partner IFE

Dan Mannix (AU) Lead Scientist

Kåre Iversen (AU) Lead Engineer

Rodion Kolevatov (IFE) Neutronics

Uwe Stuhr Lead in-kind partner PSI

Mogens Christensen (PI) Lead in-kind partner AU

AARHUS UNIVERSITY

Heimdal

NMX **BIFROST** MIRACLES MAGIC DREAN **T-REX** HEIMDAL ::0# 75 m 157 m LOKI SANS SKADI Reflectometry **ESTIA** FREIA VESPA **Powder Diffraction** DREAM HEIMDAL **Single-Crystal Diffraction** MAGIC NMX ESTIA ODIN & BEER Imaging & Engineering **Direct-Geometry Spectroscopy** CSPEC T-REX Indirect-Geometry Spectroscopy **BIFROST** MIRACLES, VESPA

Baseline schedule for Neutron Beam Instruments

• Back-up instruments: (for risk of late access to D01 & D03) BEER, CSPEC, MAGIC or BIFROST, ESTIA

March 2023:

- First Science (FS) with expert teams on some of instruments above
- Review progress of first 3 NBI* for SOUP, implement backup plan if needed.

* NBI = Neutron Beam Instrument

Project Progress

Component	Procurement	Design Specification	СТV	ко	TG3	SAT	proposed Installation
NBOA	PSI	Х	Х	Х	Q12021	Q1 2021	Q1 2021
Light Shutter	ESS /AU	х			Mar 2021		Q2 2024
Heavy Shutter	AU	х			Mar 2021		Q2 2024
BWI	AU	х	05/20				Q2 2024
Choppers	ESS / IFE	х	05/19	Oct 2020	tbd		Q2 2024
T0 Chopper	ESS / IFE	х	05/19		tbd		Q2 2024
Thermal Guide	PSI	х	03/19	Delayed Q1 2021			Q2 2023
Slits / Collimator	AU	х	05/20		05/20		Q2 2021
Sample X,Y,Z ω	AU	х	05/20		05/20		Q2 2021
2D Detector	PSI / CDT	х	05/20	Delayed Q1 2021		Q2 2023	Q2 2024
Detector Collimator	AU	х	05/20		Mar 2021		Q3 2021
Detector Support	AU	х	05/20		05/20		Q2 2021
Monitors	PSI				Final TG3		Q3 2022
Cave / Beamstop	IFE	Х	05/20	12/20	Mar 2021		Q2 2022

Project Progress

Project Progress

HEIMDAL – Hybrid Diffraction Multi Length Scale Neutron Scattering Instrument: 10^{-2 -} 10⁸ nm

2D / 3D Cold Neutron Imaging

EUROPEAN SPALLATION

SOURCE

Heimdal - Chopper Overview

The Heimdal End Station

HEIMDAL: Science Case

EUROPEAN

SPALLATION SOURCE

Powder Diffraction + SANS + Neutron Imaging

Improved magnetic materials

A. Quesada, C. Granados et al,. Adv. Electron. Mater., 2, 1500365 (2016)

Reduction experiments

13

Energy storage

Optimised Batteries

Neutron Imaging Crystal Grain Mapping /3D Tomography

EUROPEAN SPALLATION

SOURCE

SCIENTIFIC REPORTS

Received: 25 April 2017

Accepted: 28 July 2017

OPEN Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures

Heimdal – Bi-spectral Hybrid Diffractometer Diffraction - SANS - Imaging

Polarised Neutrons @ Heimdal

Heimdal - T-rex Clash

Heimdal - T-rex Clash

MEOP + local gas exchange Good: Fast turn-over Bad: Polarisation decay

SEOP + *in-situ* pumping Good: Polarisation stable Bad: 1 day to be ready First-cut modelling: a setup will work.

Further development:

- transition region between device.
- Field-turn device
- 3D field

Analyser cell in tetracoil Technique: Polarised ³He MEOP + "Local-filling" to fill cell at HEIMDAL. EUROPEAN

SOURCE

SPALLATION

Analyser cell can cover both diffraction and SANS

NBOA Status

Neutron Optical Components SuissNeutronics & Instruments

SwissNeutronics project data							
Project title	PSI@ESS, HEIMDAL - NBOA neutron	Project No.	SN18098				
	guide						
Project manager	Christian Schanzer						
Email	christian.schanzer@swissneutronics.ch						
Customer project data							
Customer	PSI	Customer ref./PO	5200147209				
Project manager	Dr. Dan Mannix	Date of contract/PO					
Email	dan.mannix@esss.se	Amendments					
Report / document data							
Prepard by	Christian Schanzer	Report / Doc. No.	SN18098-002				
Date	4-Sep-20	Revision	06				
Туре	Project management	Status	final				

SN18098 Project Report - No. 6

Milestones					
Milestone	Payment	Target date original	Target date updated	Status	Remarks
Final design review	no	31-May-19	tbd.		see status of manufacturability check and open issue No. 1
Ready for manufacturing	yes		tbd.		see status of manufacturability check and open issue No. 1
Ready for delivery	yes	23-Dec-19	expected Apr- 2021		assuming a conclusion of the final design by Oct-2020 see also open issue No. 1
Installation	no				
Final acceptance	yes	15-Jan-21			

Choppers System Status

EUROPEAN SPALLATION SOURCE

Isabel Llamas (IFE)

TG3 Chopper Technical Specification approved 21/02/2020 ESS Common Chopper Project Kick-off scheduled 1st October 2020

New Design for Thermal & Cold Guides (2019)

EUROPEAN

SPALLATION

 Rodion Kolevatov (IFE)

New design using narrow guide shielding (saves money!) New design of cold guide parallel to thermal guide McSTAS calculations for cold guide

Thermal Guide procurement on hold for PSI until 2021 -Government in-kind agreement not signed

Heimdal In-Bunker Components

Heimdal Heavy Shutter Design

Light Shutter

Heimdal Detector System

Technical Specification design finished May 2020

ESS B¹⁰ 2D Diffraction Detectors – Dream -> Magic -> Heimdal

Procurement Scheduled for July 2020

Delayed to 2021 due to no PSI in-kind approval

Cave geometry, starting point (Oct 2019)

v: -10.20810006

z: 13.7

•

.

- Cave: 90 cm diffraction, 60 cm SANS
- Beamstop: 60 cm steel core surrounded by concrete, embedded back wall of SANS cave
- Requires a wide get lost tube due to large thermal neutron flight path
- Hatch: 20 cm steel + 20 cm concrete

ରି ▼ x: 16931.12527

28.09.2020

Simulation Results

 Walls of SANS cave are unnecessarily thick. 60cm thickness required for ~1m next to diffraction cave and ~2m next to thermal beamstop

(h/vSu)

(h/vSh)

• Labyrinth roof thickness can be reduced

Cave geometry, optimized (Sept 2020)

- Reduced length of SANS cave by 2m
 - Had to increase thickness of rear wall to 70cm
- Thermal beamstop moved out of the SANS cave
- Narrowed down connection of diffraction and SANS caves, reduces impact on SANS cave walls
- SANS cave walls thinned down by 20 cm and have a uniform thickness of 40cm.
- Reduced thickness of labyrinth roof

Optimized geometry, performance

EUROPEAN SPALLATION SOURCE

Rodion Kolevatov (IFE)

- Reached savings in the amount of concrete compared to initial option
- A tender is to be announced soon

Cave Design CTV Review September 2020

Heimdal End Station

TO Chopper

EUROPEAN SPALLATION SOURCE

Prototype To Chopper Designed for 60x60 Guide

Larger Chopper designed but significantly more expensive + include new design costs

TO chopper

- Standard ESS T0 chopper rotor is designed for 60x60mm guide opening and has 70mm coverage in height
- HEIMDAL guide at a nominal position of TOchopper placement has a height of 81mm

EUROPEAN

SPALLATION

- A pinhole at 6.4 m is 50 mm tall and is fully blocked by the tungsten hammer when viewed from the far end of the guide.
- A possibility for savings from using a rotor with standard hammer dimensions

TO simulation results

- A T0 chopper is placed leaving 11 mm of the guide space below the hammer open.
- Streaming of neutrons below the hummer is absent beyond 35 meters from target (figure for $E_n > 20$ MeV)
- Same background as for full-sized TO
- Radiation safety fulfilled: guide shielding is designed to provide 1.5 uSv/h outside with TO parked open.
- 300 uSv/h contact dose rate at T0 hammer 1 week after shutdown, well within 10mSv/h limit.

Heimdal Jalousie 2D Detector

ESS simulation effort to look at the Jalousie

EUROPEAN SPALLATION SOURCE

Irina Stefanescu 2019 JINST14 P10020

200

180

160

Scattering angle [deg]

60

40

Wavelength [A]

NaCaAlF powder sample + GEANT4 model for the HEIMDAL detector

d-spacing [A]

2D Rietveld Refinement Mathias Mørch Ph.D Starting @ AU 2020

Hugo Rietveld

Heimdal General Sample Environment

Cooling

Orange Cryo 1.5K-300K

Dilution ~10s mK

cryofurnace 1.5K-600K (800K)

Magnetic Field

Cryo-magnetic 8-Telsa Pressure ? What ?

Paris – Edinburgh ?

Electro-chemistry

Diffraction

Heimdal Fast Sample Environments High Throughput Neutron Scattering

EUROPEAN SPALLATION SOURCE

Open Flow Cooling

Oxford Cryosystems:

N₂ cryo system 80-500 K

Cryo Industries America:

Cryocool-LHe : 10-600 K Consumption: 2L/hour 10 K Cold zone: 10 mm Cool down time: 10 min

Induction Heating

- Electromagnetic radiation
 Fast heating
- High temperature >1370 °C

Hot Air Blower

1000 W system 40 L/m dry air

- RT 1000 K in 100s
- combined with
- flow system
- active cooling by dry air
- => fast sample change
- + Robot sample changer

Nordforsk proposal 2020 Heimdal/Dream compatible sample environment

- Fast Heating
- + postdoc