

On coding conventions, standards and
practices

PRESENTED BY MORTEN HILKER-SKAANING

2020-09-14

Naming and casing

Naming and casing

PRESENTATION TITLE/FOOTER 4

Problems with current coding convention

Stats Stats; // compile error

Stats S; // abbreviations not allowed

auto Stats = Stats(); // personally don’t like ‘auto’, undesirable as member definition?

Stats stats; // would prefer this

Indifferent to ‘Function’ or ‘function’, but variables should not clash with typenames.

2020-09-14

Naming and casing

PRESENTATION TITLE/FOOTER 5

§ Constant: kMyVar

§ Guarantee no data dependencies on non-constants. Compile-time-only code. Ease refactoring.

2020-09-14

Standards I’ve seen everywhere

Naming and casing

PRESENTATION TITLE/FOOTER 6

§ Constant: kMyVar

§ Guarantee no data dependencies on non-constants. Compile-time-only code. Ease refactoring.

§ Member variable: m_MyVar

§ Distinguish from arguments and local variables. Read data flow into object state. Caution when threading.

2020-09-14

Standards I’ve seen everywhere

Naming and casing

PRESENTATION TITLE/FOOTER 7

§ Constant: kMyVar

§ Guarantee no data dependencies on non-constants. Compile-time-only code. Ease refactoring.

§ Member variable: m_MyVar

§ Distinguish from arguments and local variables. Read data flow into object state. Caution when threading.

§ Global/static variable: g_MyVar

§ Helps to reason about lifetime and data init order. Caution when threading

2020-09-14

Standards I’ve seen everywhere

Naming and casing

PRESENTATION TITLE/FOOTER 8

§ Constant: kMyVar

§ Guarantee no data dependencies on non-constants. Compile-time-only code. Ease refactoring.

§ Member variable: m_MyVar

§ Distinguish from arguments and local variables. Read data flow into object state. Caution when threading.

§ Global/static variable: g_MyVar

§ Helps to reason about lifetime and data init order. Caution when threading

§ Alternative casing k_myVar/c_myVar, m_myVar, g_myVar

§ Possibly enforceable via clang-tidy, if we want to do the work.

§ Some codebases used SMyStruct (POD), ZMyClass, IMyInterface, not super important

2020-09-14

Standards I’ve seen everywhere

Globals

Globals

PRESENTATION TITLE/FOOTER 10

Undefined initialization order

Mitigate C++’s global variable undefined initialization order problem.

If you for some reason need complex globals/singletons then wrap in getter function…

Instead of

static MyClass g_MyClass;

Consider

MyClass& GetMyClass() {

static MyClass g_MyClass;

return g_MyClass;

}

Runtime lib remembers order of function static initialization

Worse when dealing with DynLib/DLL loading and unloading.

2020-09-14

Spacing/indent

Spacing/indent

PRESENTATION TITLE/FOOTER 12

Personal preference for speed reading

2020-09-14

if (foo (bar))
{

if (hoge())
{

/*Lorem ipsum dolor sit amet, consectetuer adipiscing elit*/
}
else if (fuga())
{

/*Lorem ipsum dolor sit amet, consectetuer adipiscing elit*/
}
else
{

/*Lorem ipsum dolor sit amet, consectetuer adipiscing elit*/
}

}

MyObject (int a, int b, int c)
: m_a (a)
, m_b (b)
, m_c (c)
{}

Spacing/indent

PRESENTATION TITLE/FOOTER 13

Personal preference for speed reading

2020-09-14

if (foo (bar))
{

if (hoge())
{

/*Lorem ipsum dolor sit amet, consectetuer adipiscing elit*/
}
else if (fuga())
{

/*Lorem ipsum dolor sit amet, consectetuer adipiscing elit*/
}
else
{

/*Lorem ipsum dolor sit amet, consectetuer adipiscing elit*/
}

}

MyObject (int a, int b, int c)
: m_a (a)
, m_b (b)
, m_c (c)
{}

no space

4 “spaces”

space

Spacing/indent

PRESENTATION TITLE/FOOTER 14

Personal preference for speed reading

2020-09-14

if (foo (bar))
{

if (hoge())
{

/*Lorem ipsum dolor sit amet, consectetuer adipiscing elit*/
}
else if (fuga())
{

/*Lorem ipsum dolor sit amet, consectetuer adipiscing elit*/
}
else
{

/*Lorem ipsum dolor sit amet, consectetuer adipiscing elit*/
}

}

MyObject (int a, int b, int c)
: m_a (a)
, m_b (b)
, m_c (c)
{}

1000s of lines? Read only this

Spacing/indent

PRESENTATION TITLE/FOOTER 15

Personal preference for speed reading

2020-09-14

if (foo (bar))
{

if (hoge(
{

/*L
}
else if (
{

/*L
}
else
{

/*L
}

}

MyObject (int
: m_a (a)
, m_b (b)
, m_c (c)
{}

1000s of lines? Read only this

Spacing/indent

PRESENTATION TITLE/FOOTER 16

Personal preference for speed reading

2020-09-14

if (foo (bar))
{

if (hoge(
{

/*L
}
else if (
{

/*L
}
else
{

/*L
}

}

MyObject (int
: m_a (a)
, m_b (b)
, m_c (c)
{}

if (foo(bar))
if (hoge(

/*L
} else if

/*L
} else {

/*L
}

}

MyObject(int a

clang-format:
Structure is lost
Have to read RHS

Unsorted practices

Unsorted practices

PRESENTATION TITLE/FOOTER 18

§ Split into modules: Logically different systems (sound, physics, render, ui) walled off with interfaces. Exchange data as PODs
or “pure” interface objects

− Never exposes 3rdparty code/middleware to other systems.

− Optimizes compilation and linking, and to be able to “discard” systems.

− Could also try Pimpl-like classes for this

2020-09-14

Unsorted practices

PRESENTATION TITLE/FOOTER 19

§ Split into modules: Logically different systems (sound, physics, render, ui) walled off with interfaces. Exchange data as PODs
or “pure” interface objects

− Never exposes 3rdparty code/middleware to other systems.

− Optimizes compilation and linking, and to be able to “discard” systems.

− Could also try Pimpl-like classes for this

§ Create local structs to hold context for computation with many objects

− Sign class is too big?

2020-09-14

Unsorted practices

PRESENTATION TITLE/FOOTER 20

§ Split into modules: Logically different systems (sound, physics, render, ui) walled off with interfaces. Exchange data as PODs
or “pure” interface objects

− Never exposes 3rdparty code/middleware to other systems.

− Optimizes compilation and linking, and to be able to “discard” systems.

− Could also try Pimpl-like classes for this

§ Create local structs to hold context for computation with many objects

− Sign class is too big?

§ A byte-stream wrapper that provides read/writeFloat(), read/writeUint64(), read/writeString() etc for types with alignment

− Useful for networking/serialization

2020-09-14

Unsorted practices

PRESENTATION TITLE/FOOTER 21

§ Split into modules: Logically different systems (sound, physics, render, ui) walled off with interfaces. Exchange data as PODs
or “pure” interface objects

− Never exposes 3rdparty code/middleware to other systems.

− Optimizes compilation and linking, and to be able to “discard” systems.

− Could also try Pimpl-like classes for this

§ Create local structs to hold context for computation with many objects

− Sign class is too big?

§ A byte-stream wrapper that provides read/writeFloat(), read/writeUint64(), read/writeString() etc for types with alignment

− Useful for networking/serialization

§ ONLY_ON_BRANCH(BranchName)

− Macros to allow code to be compiled on a named branch. Or several of branches. Same for disallow.

2020-09-14

Unsorted practices

PRESENTATION TITLE/FOOTER 22

§ Split into modules: Logically different systems (sound, physics, render, ui) walled off with interfaces. Exchange data as PODs
or “pure” interface objects

− Never exposes 3rdparty code/middleware to other systems.

− Optimizes compilation and linking, and to be able to “discard” systems.

− Could also try Pimpl-like classes for this

§ Create local structs to hold context for computation with many objects

− Sign class is too big?

§ A byte-stream wrapper that provides read/writeFloat(), read/writeUint64(), read/writeString() etc for types with alignment

− Useful for networking/serialization

§ ONLY_ON_BRANCH(BranchName)

− Macros to allow code to be compiled on a named branch. Or several of branches. Same for disallow.

§ Testing: “Negated tests”

− A parameter telling your test that it must fail, so you can test that tests are fallible, which is required to be useful.

2020-09-14

Finish presentation

