

Neutron diffraction and imaging on battery systems

senyshyn@frm2.tum.de

MLZ is a cooperation between:

Helmholtz-Zentrum Geesthacht Zentrum für Naterial- und Kösterforschung

Li-ion battery: principle of operation

Projected production of Li-ion batteries in Europe

ESS - ILL Topical Workshop on Imaging, Materials and Engineering

Time evolution of 18650 cell capacity

 Since 2012 the capacity increase is achieved by voltage increase introduction of Si to graphite anodes

Materials for battery applications

Different mechanisms of Li-ion battery degradation

Neutron-based experimental techniques with proven relevance\impact in battery research

Neutron diffraction: detail of crystal structure, localisation and quantification of lithium; microstructural studies; phase analysis.

Neutron imaging: lithium distribution, gas formation, electrolyte dynamics; *Small-angle neutron scattering:* in-situ materials morphology and fracturing upon cell fatigue;

Quasielastic neutron scattering: in-situ structure and mobility of electrolytes in Li-ion batteries;

Reflectometry: studies of solid-electrolyte interphase; studies of lithiation in amorphous silicon; solid-liqued interfaces;

Neutron depth profiling: nanometer sensitive probe of lithium concentration in electrode materials;

Positron spectroscopy: charge- and fatigue-induced defect formation;

Neutron and Prompt gamma activation analysis: non-destructive and simultaneous elemental/isotope analysis;

Gas evolution in pouch cells studied by neutron radiography

15

20

10

t/h

5

0

R.F. Ziesche et al., Nature Communications 11 (2020) 777

Simultaneous neutron radiography and diffraction data collection on 18650-type cell cycled up-side-down

Fresh cell

https://www.youtube.com/watch?v=ICPzHO 1nQ8

Why graphite?

Simultaneous neutron radiography and diffraction data collection on 18650-type cell cycled up-side-down

Fresh cell

https://www.youtube.com/watch?v=ICPzHO 1nQ8

Spatially-resolved neutron diffraction and current distribution in Li-ion batteries

ESS - ILL Topical Workshop on Imaging, Materials and Engineering

Selected diffraction patterns

Lithium distribution in the middle of 18650-type cell

Spatially-resolved TOF neutron diffraction

D. Petz et al., J. Power Sources 448 (2020) 227466

Spatially-resolved diffraction using conical slits

Lithium distribution in the graphite anode of 18650-type lithium ion battery

Spatially resolved neutron diffraction STRESS-SPEC m, rel. un. 0.8 0.8 0.7 x position, mm

Summary

 Perspectives for neutron powder diffraction and spatially-resolved diffraction pinhole neutron diffraction

More flux, better resolution

• Neutron diffraction tomography

Low-divergent\parallel monochromatic neutron beam with submillimeter focusing

• Neutron imaging in battery research More flux, better resolution, higher neutron energy

Acknowledgment

Dr. M.J. Mühlbauer (DPMA), Dr. O. Dolotko (Ames Lab)

Dr. V. Baran (DESY), D. Petz (TUM), V. Kochetov (Uni Rostock)

STRESS-SPEC team: Dr. M. Hoffmann (FRM II, TUM), Dr. W. Gan (HZG)

Dr. J. Rebell-Kornmeier, K. Braun

ILL: Dr. T. Pirling (SALSA, ILL)

KIT: Dr. M. Heere, Dr. M. Knapp, Prof. H. Ehrenberg

Berkeley Lab: Dr. R. Kostecki

Bundesministerium für Bildung und Forschung

ESS - ILL Topical Workshop on Imaging, Materials and Engineering

Neutron CT reconstruction from 18650-type LCO|C cell

Evolution of the neutron diffraction signal (background subtracted) upon cooling of LP30 electrolyte filled in a thin-wall vanadium container.

Chosen electrolyte: LP30, EC+DMC+1M LiPF₆; Melting temperature: ca.250 K

ESS - ILL Topical Workshop on Imaging, Materials and Engineering

Distribution of lithium and electrolyte concentration in fresh and aged 18650-type cells

