Neutron diffraction and imaging on battery systems

senyshyn@frm2.tum.de
Li-ion battery: principle of operation
Market price $/kWh based on Li-ion technology

Initial price ~$4,000/kWh

Tesla Roadster ~$240/kWh

with Novel Chemistry & M

Basic Li-ion I

$1,200 $1,000 $800 $600 $400 $200 $0

Price [$/kWh]

Courtesy: Gleb Yushin
Projected production of Li-ion batteries in Europe

Over 300 GWh/a Li-Ion Battery Cell Production Capacity Announced in Europe

- **Salzgitter, 2024**
 - 16 GWh, later 24 GWh
- **Erfurt, 2022**
 - 14 GWh, later 100 GWh
- **Sunderland, 2010**
 - 2.5 GWh
- **Willstät, 2020**
 - 1 GWh
- **France, 2022**
 - Capacity unknown
- **Germany, 2023**
 - 20 GWh, later 24 GWh
- **Germany, 202X**
 - 4 GWh, later 8 GWh
- **Mo i Rana, 2023**
 - Ramp up to 32 GWh
- **Skelleftea, 2021**
 - 8 GWh, later 32 GWh
- **Bitterfeld, 2022**
 - 10 GWh
- **Wroclaw, 2018**
 - 6 GWh, later 70 GWh
- **Komarom, 2020**
 - 7.5 GWh
- **Göd, 2018**
 - 3 GWh, later 15 GWh
- **Europe, 202X**
 - Capacity unknown
- **Europe, 202X**
 - Capacity unknown

© Roland Zenn, November 2019
Moore's law does not hold true for battery development

- 120 mAh/annum average increase rate over almost 25 years
- ~ 3.5%/year relative increase
- Since 2012 the capacity increase is achieved by voltage increase and introduction of Si to graphite anodes

Not steady increase, but a step in performance of Li-ion batteries is required... pure material problem
Materials for battery applications

Anode materials
- \(\text{Li}_4\text{Ti}_5\text{O}_{12} \)
- \(\text{Li}_2\text{TiO}_3 \)

Cathode materials
- \(\text{Li}_{1-x}\text{CoPO}_4 \)
- \(\text{Li}_x\text{MoO}_2 \)

Lithium electrolytes
- \(\text{Li}_{1.3}\text{Al}_{0.3}\text{Ti}_{1.7}(\text{PO}_4)_3 \)
- \(\text{Li}_{10}\text{GeP}_2\text{S}_{12} \)
Different mechanisms of Li-ion battery degradation
Neutron-based experimental techniques with proven relevance\impact in battery research

Neutron diffraction: detail of crystal structure, localisation and quantification of lithium; microstructural studies; phase analysis.

Neutron imaging: lithium distribution, gas formation, electrolyte dynamics;

Small-angle neutron scattering: in-situ materials morphology and fracturing upon cell fatigue;

Quasielastic neutron scattering: in-situ structure and mobility of electrolytes in Li-ion batteries;

Reflectometry: studies of solid-electrolyte interphase; studies of lithiation in amorphous silicon; solid-liqued interfaces;

Neutron depth profiling: nanometer sensitive probe of lithium concentration in electrode materials;

Positron spectroscopy: charge- and fatigue-induced defect formation;

Neutron and Prompt gamma activation analysis: non-destructive and simultaneous elemental/isotope analysis;
Gas evolution in pouch cells studied by neutron radiography

4D imaging on lithium-batteries

Pristine/0 s
Partly dc/1500 s
-225.71 mAh
Partly dc/3900 s
-580.55 mAh

R.F. Ziesche et al., Nature Communications 11 (2020) 777
Simultaneous neutron radiography and diffraction data collection on 18650-type cell cycled up-side-down

Fresh cell

Fatigued cell

https://www.youtube.com/watch?v=ICPzHO_1nQ8
Why graphite?

Neutron, $\lambda=1.5482$ Å

High-energy synchrotron, $\lambda=0.20708$ Å
Simultaneous neutron radiography and diffraction data collection on 18650-type cell cycled up-side-down

https://www.youtube.com/watch?v=ICPzHO_1nQ8
Spatially-resolved neutron diffraction and current distribution in Li-ion batteries
Selected diffraction patterns
Lithium distribution in the middle of 18650-type cell
Spatially-resolved TOF neutron diffraction

Fresh
120 cycles
200 cycles
400 cycles

D. Petz et al., J. Power Sources 448 (2020) 227466
Spatially-resolved diffraction using conical slits

Gauge volume
Neutron diffraction

Gauge volume
Diffraction tomography

1.0 mm

Principle of diffraction tomography
Lithium distribution in the graphite anode of 18650-type lithium ion battery
Summary

- Perspectives for neutron powder diffraction and spatially-resolved diffraction

 More flux, better resolution

- Neutron diffraction tomography

 Low-divergent\parallel monochromatic neutron beam with submillimeter focusing

- Neutron imaging in battery research

 More flux, better resolution, higher neutron energy
Acknowledgment

Dr. M.J. Mühlbauer (DPMA), Dr. O. Dolotko (Ames Lab)
Dr. V. Baran (DESY), D. Petz (TUM), V. Kochetov (Uni Rostock)

STRESS-SPEC team: Dr. M. Hoffmann (FRM II, TUM), Dr. W. Gan (HZG)
Dr. J. Rebell-Kornmeier, K. Braun

ILL: Dr. T. Pirling (SALSA, ILL)

KIT: Dr. M. Heere, Dr. M. Knapp, Prof. H. Ehrenberg

Berkeley Lab: Dr. R. Kostecki
Neutron CT reconstruction from 18650-type LCO|C cell

ANTARES@FRMII

3.0 V

4.2 V

X-ray CT

poly

mono

ca. 30 µm
Neutron CT reconstruction from 18650-type LCO|C cell

SOC
- SOC 0
- SOC 100
- difference

Fatigue
- SOC 100, fresh
- SOC 100, fatigued
- difference
Evolution of the neutron diffraction signal (background subtracted) upon cooling of LP30 electrolyte filled in a thin-wall vanadium container.

Chosen electrolyte: LP30, EC+DMC+1M LiPF₆; Melting temperature: ca.250 K
Distribution of lithium and electrolyte concentration in fresh and aged 18650-type cells

Lithium concentration x in Li_xC_6

- Fresh
- 600 cycles

Electrolyte concentration m

- Fresh
- 600 cycles