Flat moderator and beyond Other flat features

Konstantin Batkov for the neutronics team

February 12, 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Through-going tube and Lead reflector

Pinhole projections

High energy background

Outline

Through-going tube and Lead reflector

Pinhole projections

High energy background

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A possible scenario for maximal performance

- One (flat) moderator on the top
 - Easier extraction of MR plug
- Lead reflector at the bottom
 - Pb compensates for the loss from having a 240° openings
 - Less Be
- A through-going tube at the bottom with a large D₂ moderator for high intensity flux for fundamental physics studies.

Lead reflector pool

- Advantages of using Lead as outer reflector:
 - Reflect fast neutrons without slowing down
 - Increase cross talk between above and below the target (= effectively bigger reflector)
- Calculated 10% effect with respect to steel

Voluminous D₂ source for intense cold neutron beam production at the ESS arXiv:1401.6003

Trough going tube

Case	$A \times B \text{ [n/sr/s]}$
TDR H ₂ - 12 $cm \times 12 cm$	1.17×10^{15}
1a D ₂ - 25 cm × 20.6 cm	4.27×10^{15}
$1b D_2 - 25 cm \times 20.6 cm$	2.85×10^{15}

Table 2: Neutron guide extraction cross-section multiplied by the integrated cold (0-5 meV) brightness from the deuterium (D₂) moderator in the various studied cases. For comparison, the same parameter is shown for the ESS baseline case (TDR - Technical Design Report [5]). The relative statistical uncertainties are all $\sim 0.1\%$.

A D₂ moderator gives ×3 the TRD flux (12 × 12 moderator)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Through-going tube and Lead reflector

Pinhole projections

High energy background

Geometry

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Vertical shift

Cold brightness with a $3 \times 3 \text{ cm}^2$ guide moved vertically

Effect of mispositioning of a guide in vertical direction

- Tall moderator distribution is flat ⇒ not directional
- Flat moderator shows directionality
- Flat moderator also gives tolerance: a guide can be off by a couple of cm

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

Moderator image as seen from the neutron gude entrance

Thermal (0.9 $\lesssim \lambda \lesssim$ 2 Å)

Moderator image as seen from the neutron gude entrance (same color scale)

Thermal (0.9 $\lesssim \lambda \lesssim$ 2 Å)

1.5 cm flat moderator, thermal neutron (20-100 meV)

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

Moderator image as seen from the neutron gude entrance

(日)

Outline

Through-going tube and Lead reflector

Pinhole projections

High energy background

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

High energy background

Work is in progress but there are first results...

High energy background (only neutrons)

High energy flux at guide entrance ← all neutrons

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQの

High energy background (only neutrons)

High energy brightness at guide entrance

collimator views the moderator side surface

High energy background (only neutrons)

High energy brightness at guide entrance: flat over tall ratio

- Flat moderator gives more high energy background than the tall one,
- But it also performs better, so the signal-to-noise ratio is bigger.

Bibliography I

- K. Batkov, A. Takibayev, L. Zanini, F. Mezei Unperturbed moderator brightness in pulsed neutron sources NIMA:10.1016/j.nima.2013.07.031 2013
- T. Schönfeldt, K. Batkov, E. Klinkby, B. Laurizen, F. Mezei, E. Pitcher, A. Takibayev, P. K. Willendrup, L. Zanini
 Optimization of cold neutron beam extraction at ESS AccApp2013:THOTA10 2013

(日) (日) (日) (日) (日) (日) (日)

Bibliography II

F. Mezei, L. Zanini, A. Takibayev, K. Batkov, E. Klinkby, E. Pitcher, T. Schönfeldt,

Low dimensional neutron moderators for enhanced source brightness

arXiv:1311.2474 2013

E. Klinkby, K. Batkov, F. Mezei, T. Schönfeldt, A. Takibayev, L. Zanini

Voluminous D₂ source for intense cold neutron beam production at the ESS

(ロ) (同) (三) (三) (三) (○) (○)

arXiv:1401.6003 2014

Thank you

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●