RFQ Energy Measurements

Which technique?

- 1. Energy spectrometer?
 - Fairly straight forward
 - Lots of pieces, complicated
- 2. Time of Flight (ToF)?
 - Simpler setup
 - Usually needs a good edge to get absolute energy
 - If velocity is constant then can infer absolute energy using multiple BPMs
- Our choice Three BPM time-of-flight setup
 - Two close BPMs for gross energy
 - Two further apart BPMs for finer energy resolution

ToF Design

What is BPM spacing?

 Can not go too far from RFQ because bunches decohere longitudinally

For 750 H- beam:

- Velocity = 1.198e7 m/s
- $\beta = 0.0400 \rightarrow \gamma = 1.0008$
- RF = 201.25 MHz → 1/RF = 4.969 ns

So make BPM spacing 6" and 16"

- − L12 = 6" \rightarrow ToF = 12.771 ns \rightarrow 2.5734 RF cycles = 2 cycles + 206.43 degrees
- − L23 = 16" \rightarrow ToF = 33.806 ns \rightarrow 6.8035 RF cycles = 6 cycles + 289.27 degrees
- − L13 = 22" \rightarrow ToF = 46.578 ns \rightarrow 9.3895 RF cycles = 9 cycles + 138.77 degrees

Calculated Energy Sensitivities

	dVel/dE ((m/s)/keV)	dE/dL (keV/mm)	dt/dE (ps/keV)	dE/dt (keV/ps)	dPhase/dE (deg/keV)	dE/dPhase (keV/deg)
BPM 1 to 2	7.983e3	9.846	-8.471	0.118	-0.613	-1.631
BPM 2 to 3	7.983e3	3.692	-22.589	0.044	-1.635	-0.612
BPM 1 to 3	7.983e3	2.685	-31.06	0.032	-2.248	-0.445

How much does the energy change if you pick the wrong number of RF cycles?

	N0	E @ N0 – 1	E @ N0	E @ N0 + 1
BPM 1 to 2	2	2016 KeV	750 KeV	389 KeV
BPM 2 to 3	6	1032 KeV	750 KeV	571 KeV
BPM 1 to 3	9	941 KeV	750 KeV	613 KeV

BPM Signals

(1) ToF Using Phase Monitor

Feed BPM signals through low-pass filters into phase monitor

	Del-Phase (deg)	NO	ToF (ns)	Vel (m/s)	Beta	Gamma	Energy (KeV)
BPM 1 to 2	224	2	12.771	1.157e7	0.0386	1.0007	701
BPM 1 to 3	235	9	46.578	1.163e7	0.0388	1.0008	708

(2) Direct Scope Measurements

All three BPM signals into scope – *no filters, no phase monitor*

- − Capture many bunches \rightarrow FFT \rightarrow unwrap phase from 201.25 MHz FFT component
- Measurements at different RFQ power levels

Phase Difference (degrees) VS RFQ Power

* Wrap around to next RF cycle

	233 KW	220 KW	212 KW	206 KW	182 KW	162 KW
BPM 1 to 2	227.2	227.4	227.5	227.2	234.2	260.2
BPM 2 to 3	15.9	17.9	15.4	13.3	4.7	329.2*
BPM 1 to 3	243.2	245.3	242.8	240.5	238.8	229.4

Beam Energy VS RFQ Power

RFQ Power (KW)	Beam Energy (BPM 1	Beam Energy (BPM 1	Beam Energy (BPM 2	
	to 2) keV	to 3) keV	to 3) keV	
212	0.716	0.705	0.701	
220	0.716	0.704	0.699	
233	0.716	0.705	0.700	
206	0.717	0.706	0.702	
182	0.706	0.706	0.707	
162	0.669	0.710	0.556	

(3) Energy from Time of Flight using Slow-Wave Structures in BPM Signals

Can we correlated similar slow-wave structures in the BPM signals to determine the RFQ energy through time of flight (ToF)? – *poor mans chopper*

- Try and correlate BPM signal envelopes to determine ToF
 - Minimize difference in envelope structure to determine the shift in time required to align signals from different BPMs Raw BPM Signals

Aligning BPM 2 to BPM 1

Shift BPM 2 data 13.2 ns for best alignment to BPM 1 ToF = 13.2 ns \rightarrow Velocity = 1.160e7 m/s $\rightarrow \beta$ = 0.0387

Gives a beam energy of 703 keV +/- ~40 keV

Aligning BPM 3 to BPM 2

Shift BPM 3 data 34.8 ns for best alignment to BPM 2 ToF = 34.8 ns \rightarrow Velocity = 1.164e7 m/s $\rightarrow \beta$ = 0.0388

Gives a beam energy of 709 keV +/- ~16 keV

Aligning BPM 3 to BPM 1

Shift BPM 3 data 48.0 ns for best alignment to BPM 1 ToF = 48.0 ns \rightarrow Velocity = 1.163e7 m/s $\rightarrow \beta$ = 0.0388

Gives a beam energy of 707 keV +/- ~11 keV

RFQ Beam Energy from Slow-Wave Structures in BPM Signals

	Time of Flight (nsec)	Velocity (m/s)	Beta	Beam Energy (keV)	Energy Error* (keV)
BPM 1 to 2	13.2	1.160e7	0.0387	703	+/-~40
BPM 2 to 3	34.8	1.164e7	0.0388	709	+/-~16
BPM 1 to 3	48.0	1.163e7	0.0388	707	+/-~11

* Note: Energy error is a "best estimate" from alignment of BPM waveforms.

201.25 MHz Component VS RFQ Power

201.25 MHz Component VS RFQ Power

402.5 MHz Component VS RFQ Power

201.25 MHz Component VS RFQ Power

