Fermilab

HINS, PIP, PXIE and Project

M. Wendt for the Fermilab Beam Diagnostics Team

- Project X
- HINS Beam Studies
- BPM Read-out for HINS an PIP
- What is PXIE?
- Optional: TOF Measurements

Reference Design

roiect X

Reference Design

Accelerator Scope & Staging

- Warm CW front end 162.5 MHz, 5 mA (H- ion source, RFQ, MEBT, chopper)
- 3-GeV CW SCRF linac (162.5, 325, 650 MHz), 1-mA ave. beam current
- Transverse beam splitter for 3-GeV experiments
- 3-8 GeV: pulsed linac (5% duty cycle), 1.3 GHz
- Recycler and MI upgrades

Project X

- 1-GeV extraction section (new)
- Various beam transport lines,

including targets (new)

Beam Chopping

<u>1 μsec period at 3 GeV</u>

 Muon pulses (16e7) 81.25 MHz, 100 nsec at 1 MHz
 700 kW

 Kaon pulses (16e7) 20.3 MHz
 1540 kW

 Nuclear pulses (16e7) 10.15 MHz
 770 kW

Ion source and RFQ operate at 4.2 mA

~75% of bunches are chopped at 2.5 MeV after RFQ

SRF Technology Map

March 20, 2012 – ESS Beam Diagnostics Meeting (M. Wendt)

Project X

Project X MDB Test Facility Layout

	Proposed	Actual	
Particle	H+ then H-	H+ (then H- ??)	
Nominal Bunch Frequency/Spacing	325 3.1	325 3.1	MHz nsec
Pulse Length	3 @ 2.5 Hz 1 @ 10 Hz	1 @ 0.2 Hz 0.1 @ 1 Hz	msec
Average Pulse Current	~ 20 (source)	~ 20 (H, 2H+, 3H+) ~8 (RFQ - H)	mA
Pulse Rep. Rate	2.5/10	0.2/1	Hz
Beam Energy	Up to 10	2.5 to 3.0	MeV

Project X HINS Proton Source and LEBT

Duo-plasmatron Proton Source			
Energy	50 keV		
Peak Current	> 20 mA		
Pulse	3 msec		
Rep. rate	2.5 Hz		

	Name	Current [Amp]	B [Gauss]
SOL-U	Upstream solenoid	850	7900
SOL-D	Downstream solenoid	850	7900
DIP-UH	Upstream horizontal dipole	3	100
DIP-UV	Upstream vertical dipole	3	100
DIP-DH	Downstream horizontal dipole	3	100
DIP-DV	Downstream vertical dipole	3	100

Project XHINS LEBT Beam Characterization

Project X A Typical Wire Scan (LEBT)

Project X Slit-WS Emittance Measurement

Project X Species from the Proton Source

- Downstream solenoid optimized for each species
- Upstream solenoid fixed at 470 A
- ~ 40% **Protons**
- ~ 30% H2+

~ 30% H3+

As measured by LEBT toroid

Phase Space Cleaning

Project X

Source Emittance Slit & Solenoid Scans

HINS 325 MHz Pulsed RFQ

Project X Initial RFQ Beam Measurements

Horizontal Scan, WS1+2+3, 20Jan2010, I~4 ma

20

0 Horizontal (mm) 40

60

- 2.5 MeV
- 325 MHz
- Peak power up to 450 KW
- 1 ms pulses at 10 Hz **RFQ** suffered from detuning problems and water leaks \rightarrow 50 μ s pulses at 1 Hz

Profile Sigmas and Integrals ; I ~ 4 mA

Sigmas	Horizontal	Vertical	Diagonal
Scanner 1	4.5 mm	4.2 mm	4.3 mm
Scanner 2	7.0 mm	6.8 mm	6.2 mm
Scanner 3	16.2 mm	13.2 mm	13.4 mm
Integrals	Horizontal	Vertical	Diagonal
Scanner 1	14.8 V*mm	14.9 V*mm	14.7 V*mm
Scanner 2	11.8 V*mm	10.5 V*mm	10.2 V*mm

Beam loss after first wire scanner \rightarrow need focusing

1.5

0.5

0

-0.5 -

-40

-20

Project X Initial RFQ Beam Diagnostics

The HINS linac was equipped with a reconfigurable, movable diagnostics station at the end of the linac

Project X RFQ Energy Measurement by TOF

Signals from toroid and two BPM buttons, all downstream of the RFQ

Upper display: 2 µsec/div Lower display: 20 nsec/div

Lower display shows the 44 ns delay expected for transit of 2.5 MeV beam between the BPM two buttons separated by 0.96 meters

Beam current is about 3 mA

RFQ Stability

Project X Iteration of RFQ Beam Measurements

- Initial measurements suffered from RFQ water leak problems
 - RFQ limited to 50 μsec pulses
 - RFQ has been repaired and reinstalled at the Meson test facility
- Initial RFQ measurements suffered many issues
 - − No transverse focusing → Quadrupoles added
 - − No longitudinal measurements → FFC and BSM
 - − No transverse emittance measurements → Quad-Wire, Slit-Wire
 - − Energy measurement was not precise → Spectrometer magnet
 - − RFQ efficiency not accurately measured → Toroid at RFQ output
- New diagnostics line has been install
 - Reconfigurable, movable
 - Space available for R&D projects

Project X Advanced HINS Diagnostics Line

- Gate Value Quadrupole **BPM: Beam Position Monitor** Wire Scanner Horz and Vert Slits BSM: Bunch Shape Monitor (Longitudinal) FFC: Fast Faraday Cup
- FD: Faraday Cup/Dump

Toroid

T:

GV:

WS:

Q:

S:

SM: Spectrometer Magnet

RFQ Beam Diagnostics April 2011

HINS Beamline

Project X HINS MEBT Beam Diagnostics

Project X Tr. Emittance from Quad Scans

12

Horizontal Quad scan and fit

- 100 usec pulses
- H: 1.49 pi mm-mrad
- V: 1.88 pi mm-mrad

Project X Emittance along 500 µsec Pulse – Quad Scan

Project X Phase Space Plots; 9 mA RFQ

V

Ε

R

С

Α

Project X Hor. Phase Space along Pulse

- X X' along beam pulse; arbitrary units
- 6 mA beam

Project X Odd Transverse Shape Effects

Project X Hor. Shape at Minimum Focus at Wirescanner

Project Kongitudinal Bunch Shape Monitor

Longitudinal Bunch Shape – Fast Faraday Cup (SNS)

Project X

- ~ 12 GHz bandwidth
- Some limitations by signal cable

Project X Longitudinal Shape VS RFQ Power

300 KW

Feed fast Faraday Cup into high bandwidth scope (6 GHz ABW) to measure bunch shape.

Project X Diagnostic Projects for Project X

BPM Technology

• Read-out electronics

Project X

- Analog signal conditioning
- Signal sampling (ADC)
- Digital signal processing

- Data acquisition and control system interface
- Trigger, CLK & timing signals

Read-out Electronics

March 20, 2012 – ESS Beam Diagnostics Meeting (M. Wendt)

Project X

Project BPM Read-out Hardware: Analog

Project & PM Read-out Hardware: Digital

Base band is set to 22.5° per ADC sample at 50.31Msps

March 20, 2012 – ESS Beam Diagnostics Meeting (M. Wendt)

Project X

NIM BPM Hardware

Project XLinac BPM Read-out Electronics

- Analog Quadrature Downcoverter – AD8348
 - Provide from 0-40db variable gain
- ADC LTC2265
 - 12 bits @ 805MHz/16 = 50.3MHz
- FPGA Altera Cyclone III
 - Can provide all needed DSP
- uController Stelaris LM3S5B
 - 32 bit ARM processor, operating at 80MHz
- Ethernet Wiznet W5300
 - 16 bit providing ~4MB/s BW
- Custom LVDS Serial Data Bus
 - 25MHz providing
 ~2.5MB/s data transfer
 - Can be sped up if needed

- Fully configurable within the FPGA
 - Linac Clock Event
 - External Trigger (TTL)
 - Delay & Acquisition Window
 - Beam Search –
 Implemented and working
- Provide average Position, Intensity, &
 Relative Phase over each beam pulse
 for every BPM @15Hz
 - Beam pulse varies from few µsec up to ~40usec
- Provide "waveform" data for select BPMs @15Hz
 - Can select minimum of 1 BPM per crate
 - Average & decimate data rate by 16 to ~3MHz
 - IF frequency out of the Quad DC (remove distortions)

- All signals locked to Ref = 805Mhz
- ADC Clock = Ref/16
- IF = ADC Clock/16 = Ref/256
 - Pi/8 phase advance per adc sample
- Eff LO = Ref/2 + IF
- LO to Quad DC = 2*Eff LO
 - Generates I,Q on successive edges of LO input
- Cal = Ref/2

Project X Prototypes: Position Resolution

- SVD with only 6 position measurements (3H,3V)
 - Ideally expect up to 3 modes to correlate with initial trajectory & energy
 - With only 6 pickups, real noise sneaks into modes
- Conservative estimate resolution < 40um

Project X **Prototypes: Phase Resolution**

0

1.5

2.5

3

2

Measured on 2nd Harmonic at 402Mhz

3

2.5

2 **BPM**

- Expect correlations from Beam & LO
 - SVD suffers from only 3 pickups...
- Estimate resolution < 0.1 degree at 402MHz

3.5

1.5

0.35

0.3

Phase RMS (deg @402Mhz)

0.05

0.5

- CW H- source delivering 5 mA at 30 keV
- LEBT with beam pre-chopping
- MEBT with integrated broadband chopper and beam absorbers, capable to generate arbitrary bunch patters at 162.5 MHz, while disposing 4 mA average beam current
- Low beta SRF cryomodules capable of accelerating 1 mA to 15 MeV
- Beam dump capable of accommodating 1 mA at 15 MeV (15 kW) for extended operation periods.
- Associated beam diagnostics, utilities and shielding.

Sizes of components/caves Special requirements

Safety considerations

Project X

Identify:

•

•

- Life and Rad •
- Optimize placement
 - Cable length
 - Ease of access
 - Distance to cryo
 - Min. penetrations
- Iterate as required

Project X PXIE Ion Source & LEBT

- Provides 30-keV beam transport from the Ion Source to the RFQ
 - chopper
 - diagnostics

- BPMs in each triplet or doublet (3D positions)
 - Draft of specifications
- A set of beam diagnostics to characterize the RFQ beam
 - Toroid, emittance monitor, laser wire(s), wire scanner, fast F-cup
 - Scarpers a halo diagnostics
- A set of diagnostics to characterize the beam towards the HWR
 - Toroid, DCCT(?), laser wire(s), wire scanner, extinction monitor
 - Scrapers as halo diagnostics

Laser Wire for H- Beams

Project X

- H- neutralization by photo-detachment
 - − Cross-section $\sigma_{max} \approx 4.2 \times 10^{-17} \text{cm}^2$
 - Electron binding $E_0 = 0.7543 \text{ eV}$
- Typical HINS / PX MEBT parameters
 - $E_{beam} = 2.5 \text{ MeV}, \text{ Nd: YAG laser 1064 nm}, 90^{\circ} \text{ angle, -> } \sigma \approx 3.66 \text{x} 10^{-17} \text{ cm}^2$
 - Requires laser energy ~ 10-30 mJ

Project X Laser Wire (400 MeV H⁻)

 Image: wide of the sector of the se

- Laser Profile Monitor details
 - Q-switch laser
 - Laser energy: 50 mJoule
 - Wavelength: 1064 nm
 - Pulse length: 9 nsec
 - Fast rotating mirrors (±4⁰ / 100 µsec)
 - e⁻ detector: scintillator & PMT

Laser Wire: First Results

Profile created from 10 Laser pulses at each of 80 mirror positions across the beam.

Project X

System acquires data at 15Hz, Linac Cycle rate.

Profile created by integrating the area of the raw PMT Signal

March 20, 2012 – ESS Beam Diagnostics Meeting (M. Wendt)

- Non-intrusive profile measurement of high intensity p-beams
 - SNS / Fermilab R&D collaboration for Project X, beams in MI
 - Evaluate measurement techniques for available electron gun
 - Setup simulation

oiect X

- Look at the deflected projection of a tilted sheet of electrons due to the proton beam charge
 - Neglect magnetic field (small displacement of projection)
 - Assume path of electrons is straight (they are almost straight)
 - Assume net electron energy change is zero (if symmetric)
 - Proton bunch length >> electron scan

$$\Rightarrow \frac{d\theta_0(x)}{dx} = \int_L \frac{e}{mv^2} \frac{\delta(x, y)}{\varepsilon_0} dy$$

i.e. take the derivative to get the profile

Project-Beam Scanner Test Setup at NWA

Gun

Solenoid

Actuators

X2

Cave at NWA

Energy: 1 - 60 keVCurrent: $10 \mu A - 6 m A$ Spot size: 50 μ m – 10 mm

Firewire Cameras

Electron Gun

EGH-6210

Gateable: 2 μ s – DC; 5 kHz max rate

March 20, 2012 – ESS Beam Diagnostics Meeting (M. Wendt)

Faraday Cup / Dump

Thank You!

March 20, 2012 – ESS Beam Diagnostics Meeting (M. Wendt)

Page 56

OTR with Protons

March 20, 2012 – ESS Beam Diagnostics Meeting (M. Wendt)

Project X

Page 57

SEM Mulitwire

of the residual gas – p or pbar collisions

Project Yonization Profile Monitor (IPM)

-10 k¥

-800/1600 ¥

-800\

E and B

Mark II Electron Profile Monitor

Gas molecule -> ion + e

Based on the ionization

- Collect either
 - lons
 - Subject to space charge
 - or Electrons
 - Needs magnetic a guide^{-100 Y}
 Field, such that the spin diameter < detector strip width</p>
- Used for turn-by-turn measurements
 - Booster: 2.25 1.5 µsec
 - MI: 11.1 µsec
 - TeV: 21 µsec (also single bunch)

Clearing Field

Anode

Suppression Screen

Field Shaping

Electrodes

Microchannel Plate

— Anode Strips

Secondary Electron

Button BPM

• Commercial UHV RF button feedthroughs, made to specs

- RF properties (numerical simulation)
- Environmental requirements
- Compact construction
- Installation, tolerances, cabling
- Other button load impedance,

Project X

than $R_0 = 50 \Omega$?

$$Z_{\text{button}}(\omega) = \phi R_0 \left(\frac{\omega_1}{\omega_2}\right) \frac{(\omega_1/\omega_2)}{1+(\omega/\omega_1)^2}$$

$$\omega_1 = \frac{1}{R_0 C_{\text{button}}} \qquad \omega_2 = \frac{v_{\text{beam}}}{2 r_{\text{button}}}$$

$$\phi = \frac{r_{\text{button}}}{4 R_{\text{pipe}}}$$

March 20, 2012 – ESS Beam Diagnostics Meeting (M. Wendt)

frequency Hz

Proise PM Electronics Scheme (ATF DR)

Project X Automatic Gain Correction

- Use calibration tone(s)
 - 714+ε MHz, 714-ε MHz
 - Reflected and/or thru BPM calibration signal
 - Inside analog pass-band
 - Separate DDC in NB mode
 - Error & correction signals:

$$X_{\rm Err} = \frac{A_{\rm CAL} + B_{\rm CAL} + C_{\rm CAL} + D_{\rm CAL}}{4 X_{\rm CAL}}$$
$$X_{\rm Corr} = X_{\rm raw} X_{\rm Err} \qquad X: A, B, C, D$$

- Advice:
 - Two calibration tones is not a good idea! (use "ping-pong" calibration workaround)