

33 % of all experiments at D11 use the longest detector distance, i.e. need low Q (statistics provided by PL)

Why USANS ?

Often the Q range is not sufficient to reach a plateau / the Guinier regime (often important for fitting the data with model form factors)

On 26 April 2010 a USANS seminar was held by Roland Gähler on the technique proposed & by Peter Lindner on the scientific case

The project has been accepted and a budget line has been created

The main advantage of an option: No need for a new, separate instrument, but an easily exchangeable option on LOKI: SANS + USANS on one instrument

OPUS: the basic idea

The basis of our approach is the SAMBA principle proposed by Roland Gähler in 2002

R. Gähler et al. Proceedings SPIE 4785; Advances in Neutron Scattering Instrumentation; Ed: Anderson I., Guerard B. 153-163. 2002 C. Grünzweig et al. App. Phys. Lett., 91, 203504-203504-3. 2007

Sketch of the focussing effect of the OPUS principle by using multilenses close to the sample.

Previously Tests on D11

The D11 layout

Previously Tests on D11

Diaphragm changer disc, like at 20.5m upstream from the sample position

For first D11 tests: multi-slit 1D geometry

Advantages of 1D geometryHigher intensity;

• no prisms for g-correction

Disadvantage: not usable for anisotropic scattering

Previously Tests on D11

For first D11 tests: 1D geometry

Cut of the multi cylinder lens

The Cd multi lens apertures; adaptable from 0-2mm width

For the tests the lenses have been put on the black nose

in the final version they shall be put in the diaphragm changer disc at this position already available

What has been done so far?

Two series of tests in August 2007 and December 2007 both with a multi-slit aperture

Tests with 2 different cameras: ANDOR DU 888 in August Princeton Instruments PhotonMax 1024 in December

measurement of diverse samples (gratings, soft matter samples, cellulose fibers from S18, etc.

What has been done so far?

What has been done so far?

First results of the test measurements at D11 on 28-30 Aug. 2007, using the Andor EMCCD camera from Munich

The EMCCD camera allowed for on-chip amplification up to a factor of 1000

The weak signal of just a few few hundred neutrons per pixel was enhanced to produce an image

Measuring time for a sample was between 60 seconds and five minutes (Typical SANS measurement in the low Q range: 30 min ...several hours)

- So far, you do a dedicated SANS experiment somewhere and if needed another dedicated USANS experiment
- > This means submitting a second proposal, wait ...
- ➢ Aim: to top LOKI with an USANS option
- get at least another order of magnitude in q with decent overlap to the normal SANS curve
- Needs a high resolution detectorSub-task on a NSE hp cell
- Then do USANS for a sample whenever you need additional q

Setting up the Barotron Maatel / Arinax

Setting up the Photonic Science <u>CCD</u>

Scintillator mainly contains ...

⁶LiF: to react with neutrons and produce energy

ZnS to convert energy into light

AgBehenate powder

Structure and governance

DESIGN FOR D11 PROTOTYPE

DESIGN FOR D11 PROTOTYPE

ESS Construction Proposal LoKI - A broad-band SANS instrument

Andrew J Jackson and Kalliopi Kanaki

Inital Submission: 31st October 2012 Final Submission: 28th February 2013

DETECTORS FOR THE PROTOTYPE

2750 (h) x 2200 (v) pixels, 4.54 μ m square Read out area of 354(w) x 221 (h) mm imaged on 2 ICCD cameras Optical pixel size at the scintillator input of 177 μ m square (no binning) Photonic Science UK (same as OrientExpress & Cyclops)

TO BE DEFINED FOR LOKI

USANS CORRECTION OF THE GRAVITATIONAL DISTORTION

FOR SCIENCE

For $L_1 = L_2 = 10$ m, tan $\gamma = 10$; $\gamma = 84^{\circ}$

USANS: design of multi-lens and prisms near sample :

Prisms: <u>Height: 2.5 mm</u> <u>Width: 50 mm</u> <u>Length: 16 mm</u> <u>Material: Quartz / Sapphire</u> <u>Attenuation: ≤ 10%</u>

