Detector Strategy for LoKI

K. Kanaki, R. Hall-Wilton, S.Kolya, A. Jackson

Outline

- Quantification of detector requirements
- Detector technology options for LoKI
- Time schedule & technology decision 'tree'
- Costing
- Status of TG2 documents

Detector performance standards

- Spatial resolution
- Rate capability
- Efficiency
- Time resolution
- Background
- Dynamic range

Detailed standards definitions and measurement methods are in the process of documentation (prepared by the ESS DG).

Technologies under examination must tick all the necessary boxes before being endorsed as solution for an instrument (no detector prototypes installed at ESS).

Preliminary geometry considerations starting point of evaluation

LoKI detector requirements & evaluation tools

- Need for justification of the detector specs on scientific basis
- Need for quantitative means to choose our compromises
- Analytical calculations for efficiency, time (tof) and position resolution
- Simulations with McStas 'realistic' samples: e.g. spheres (200 Å), water, etc.
 - Window frame geometry implemented
 - 'Barrel' geometry partly evaluated, geometry implementation in progress
- Simulations with Geant4 reading the McStas output
 - 'barrel' geometry implemented
 - window frame geometry implementation pending
- Local rates and resolutions for the main LoKI detectors have been quantified and are in the process of refinement (-> instantaneous rates)
- Beam monitor/transmission detector requirements will follow
 - taking a broader view on this since the requirements are not only LoKI-specific

	active	θ	spatial	time	local
	area	coverage	resolution	resolution	rates
zero-angle	$\sim 70 \text{ cm}^2$	$0^{\circ}-0.5^{\circ}$	sub-mm ??	μs	$9 \times 10^8 \text{ Hz/cm}^2$
low-angle	$0.25-1 \text{ m}^2$	$0.5^{\circ}-4^{\circ}$	3 mm	μs	$500 \text{ Hz/mm}^2(\text{S}), <70 \text{ Hz/mm}^2(\text{W})$
high-angle (WF)					
mid-panel	6 m^2	4° - 27°	0.5-1 cm	μs	$140 \text{ Hz/cm}^2(\text{S}), 1.3 \text{ kHz/cm}^2(\text{W})$
front-panel	8 m^2	27° - 56°	1-3 cm	μs	$3 \text{ Hz/cm}^2(\text{S}), < 5 \text{ kHz/cm}^2(\text{W})$
high-angle (B)	16-34 m ²	3°-90°	1-3 cm	μs	$<3 \text{ kHz}/\theta \phi \text{ bin (S)}, 3 \text{ kHz}/\theta \phi \text{ bin (W)}$

Local rates (n/mm²-cm²/s): WF

xy neutron hit distributions for spheres (up) and water (down)

Local rates: barrel

Q distributions from McStas nD_monitor (WF) (no detector resolution included)

Q distributions folded with detector position resolution (WF)

Detector technologies: options and maturity

	spatial	rate	$\cos t$	maturity		
	resolution	capability				
zero-angle						
gaseous detectors	ok	maybe	ok	development		
scintillators	ok	maybe	ok	development		
semiconductors	ok	ok	maybe	concept		
fission chambers	ok	maybe	ok	development		
micromegas	ok	ok	ok	concept		
low-angle						
Multi-Blade	ok	ok	ok	prototype		
MPGD	ok	ok	ok	concept		
A1-CLD	ok	maybe	maybe	prototype		
scintillators	maybe	maybe	maybe	development		
³ He	no	no	no	mature		
high-angle (WF)						
Multi-Blade	ok	ok	ok	prototype		
MPGD	ok	ok	ok	concept		
scintillators	ok	ok	no	N/A		
³ He	ok	ok	no	N/A		
high-angle (B)						
MWPC	ok	ok	ok	development		
GEM	ok	ok	ok	development		
scintillators	ok	ok	no	N/A		
³ He	ok	ok	no	N/A		

Multi-Blade detection principle (ILL/ESS/Linkoping)

- Position sensitive ¹⁰B (MWPC) gaseous detector originally developed for reflectometry
- Exploits grazing angle for high efficiency ٠
- The inclined geometry results in improved spatial resolution and rate capability •
- Resistive wires readout and cathode strips in coincidence for position information

Multi-Blade prototype performance

- position resolution: 0.6 mm x 4.4 mm for 10°, single-coated
 0.3 mm x 4 mm for 5°, double-coated
- rate capability: 2 kHz/mm²
- Further developments planned
 - alternative readout for eliminating scattering effects
 - improvements in the response uniformity

BAND prototype performance

coating the lamellae

installation of lamellae

GEM readout installation

- low neutron incident angle
- position resolution: < 100 μm
- rates: 1 MHz/mm²
- efficiency expected to be similar to other inclined geometries, e.g. A1CLD (50%-60%)
- simulations are complete
- first measurements in November at the R2D2 beamline at IFE, Norway

Time schedule to hot commissioning

Detector technology decision graph

- Decision points estimated based on current state of assigned resources
- The low angle detector is the key driver for the scientific performance of LoKI.
- The decision for the high angle detector is less time critical due to the looser requirements and due to the fact it is in fact a geometry decision.
- It'll be very beneficial for the project if we explore our options further, especially for the budget.
- Better making a low risk decision in the future than a high risk decision now.

Costing

in k€ Phase 1 (Design and Planning)		Phase 2 (Final Design)			Phase 3 (Procurement and Installation)			Phase 4	(Beam Tes Commissio	ting and Cold ning)	Total					
	Hardware	Staff (kQ)	Staff (months)	Hardware	Staff (kC)	Staff (months)	Hardware	Staff (kC)	Staff (months)	Hardware	Staff (kC)	Staff (months)	Hardware	Staff (kC)	Staff (months)	Staff (years)
Integrated Design	0	360	36	0	600	60	0	480	48	0	240	24	0	1680	168	14.00
Systems Integration	0	0	0	0	30	3	0	120	12	0	60	6	0	210	21	1.75
Detectors and Data Acquisition	0	30	3	0	30	3	6000	60	6	200	120	12	6200	240	24	2.00
Optical Components	0	30	3	0	30	3	500	30	3	20	60	6	520	150	15	1.25
Choppers	0	30	3	0	30	3	250	30	3	20	30	3	270	120	12	1.00
Detector Vessel	0	30	3	0	30	3	1500	- 30	3	0	10	1	1500	100	10	0.83
Sample Environment	0	0	0	0	30	3	500	10	1	200	60	6	700	100	10	0.83
Shielding	0	30	3	0	60	6	1500	60	6	20	60	6	1520	210	21	1.75
Instrument Specific Support Equipment	0	0	0	0	30	3	100	120	12	20	30	3	120	180	18	1.50
Instrument Infrastructure	0	30	3	0	30	3	100	60	6	20	30	3	120	150	15	1.25
Total	0	540	54	0	900	90	10450	1000	100	500	700	70	10950	3140	314	26.17
Grand total (no VAT)									14090							

Figure 6.2: Costing for LoKI with "window frame" style detectors using ¹⁰B

in k€	Phase 1 (Design and Planning)			Phase 2 (Final Design)			Phase 3 (Procurement and Installation)			Phase 4 (Beam Testing and Cold Commissioning)			Total			
	Hardware	Staff (k€)	Staff (months)	Hardware	Staff (k€)	Staff (months)	Hardware	Staff (k€)	Staff (months)	Hardware	Staff (k€)	Staff (months)	Hardware	Staff (k€)	Staff (months)	Staff (years)
Integrated Design	0	360	36	0	600	60	0	480	48	0	240	24	0	1680	168	14.00
Systems Integration	0	0	0	0	30	3	0	120	12	0	60	6	0	210	21	1.75
Detectors and Data Acquisition	0	30	3	0	30	3	4000	60	6	200	120	12	4200	240	24	2.00
Optical Components	0	30	3	0	30	3	500	30	3	20	60	6	520	150	15	1.25
Choppers	0	30	3	0	30	3	250	30	3	20	30	3	270	120	12	1.00
Detector Vessel	0	30	3	0	30	3	1000	30	3	0	10	1	1000	100	10	0.83
Sample Environment	0	0	0	0	30	3	500	10	1	200	60	6	700	100	10	0.83
Shielding	0	30	3	0	60	6	1500	60	6	20	60	6	1520	210	21	1.75
Instrument Specific Support Equipment	0	0	0	0	30	3	100	120	12	20	30	3	120	180	18	1.50
Instrument Infrastructure	0	30	3	0	30	3	100	60	6	20	30	3	120	150	15	1.25
Total	0	540	54	0	900	90	7950	1000	100	500	700	70	8450	3140	314	26.17
Grand total (no VAT)									11590							

Figure 6.3: Costing for LoKI with "lined tube" 10B detectors

- In the process of recosting all the options
- We expect the budget to be significantly lower (> 1 MEUR)
- ³He price quote exists BUT
 - not an option for the low angle detector due to performance issues
 - not an option for the high angle detector due to cost issues (price>LoKI budget!!)

Status of TG2 detector documentation

- Detector requirements quantified and in the process of refinement
- Interfaces (physical & organizational) identified
- Draft commissioning plan: actions list, schedule to be prepared
- Risk document in place
- Non-functional requirements collected