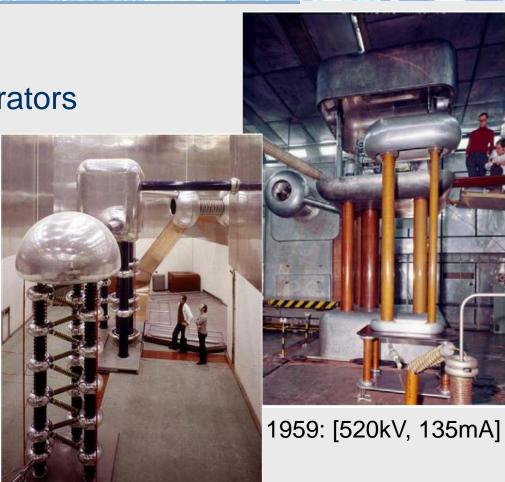


ESS Klystron Modulator Workshop

CERN experience

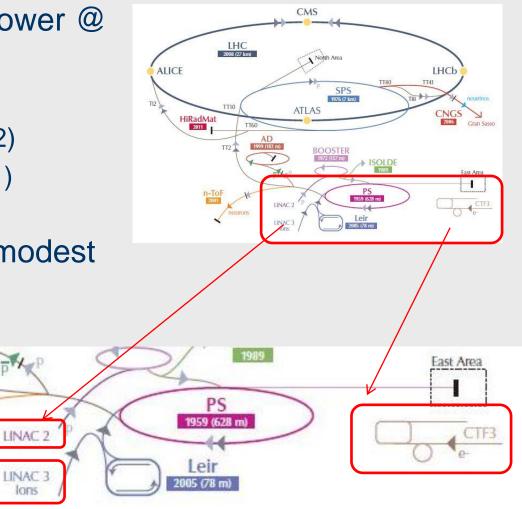
David Nisbet CERN


- Past and present
 - CERN accelerator complex
 - LINACs @ CERN
- Present : LINAC4
- Future : CLIC
- Strategy
- Conclusion

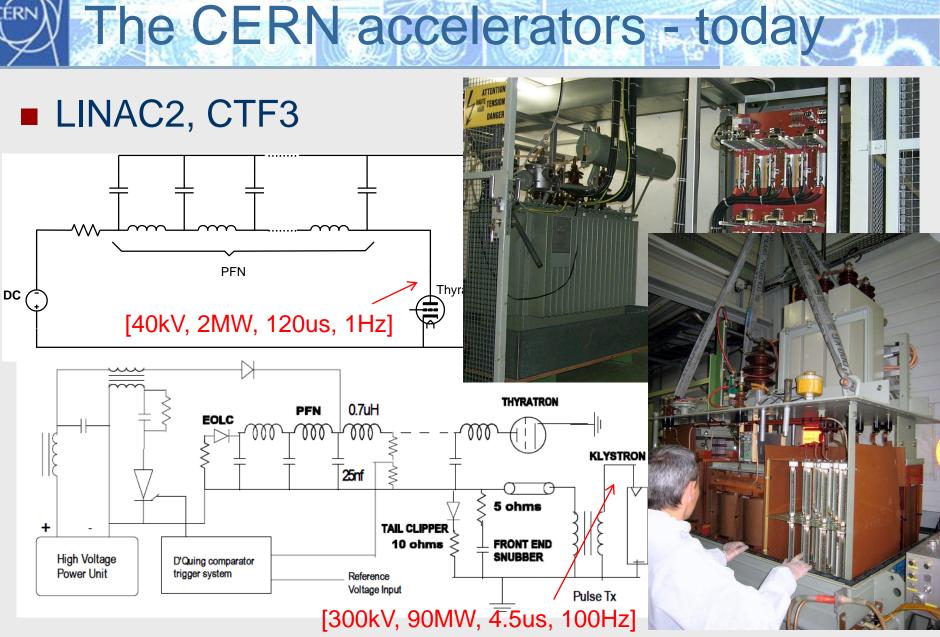
The CERN accelerators - past

LINAC1 and LINAC2

- Cockcroft-walton generators
- Used for CERN proton physics until 1993
- (not recommended for new projects)

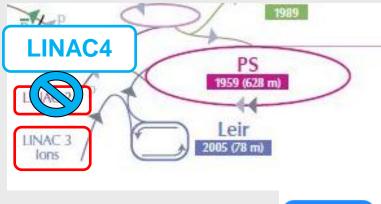


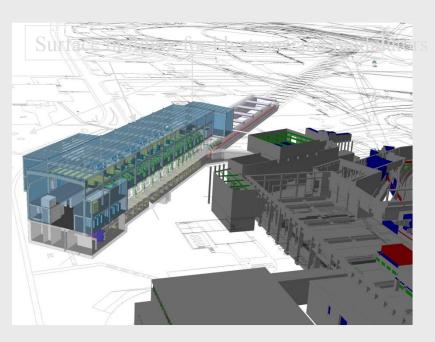
1973: [750kV, 150mA]



The CERN accelerators - today

- Operational pulsed RF power @ CERN
 - LINAC2 (triode)(1976)(x2)
 - LINAC3 (tetrode)(1994)(x2)
 - CTF3 (klystron)(1981)(x11)
- Pulsed RF power has a modest (but important) presence
- Also several teststands
 - LINAC4
 - CTF3

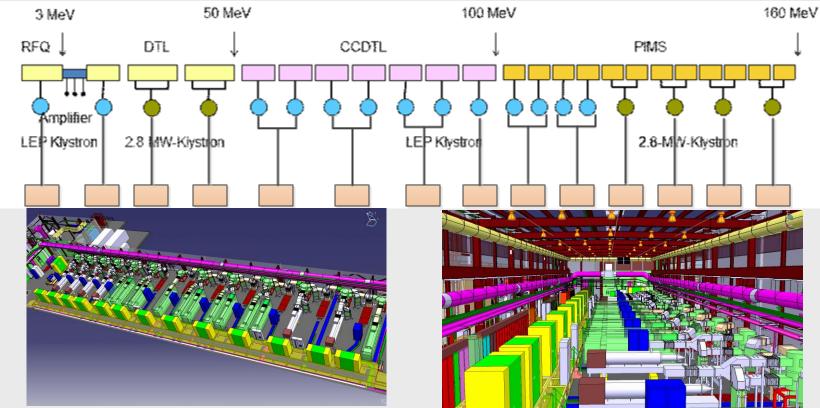



CERN Modulator Experience, Lund, April 2012

Due to the age of LINAC2

LINAC4

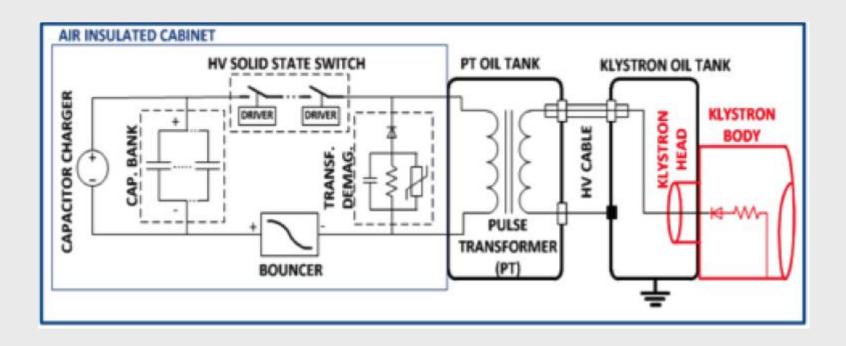
- Replace with an H- 'LINAC4'
- Higher energy and beam intensity
- Currently under construction


Status Jan 2012

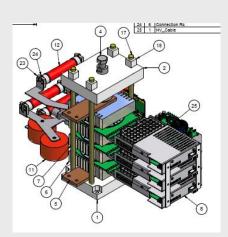
- 14 klystron modulators
 - 19 klystrons (13 'LEP' klystrons, 6 new klystrons)
 - 25 accelerating cavities

Phase I

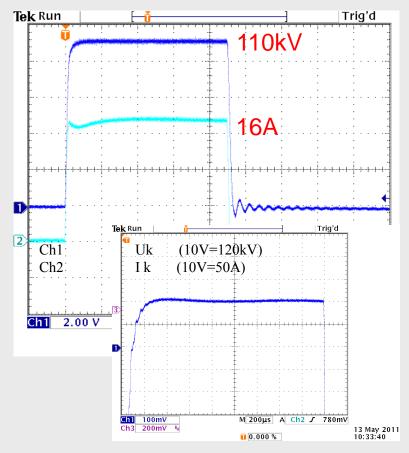
CERN Modulator Strategy


LINAC4

- LINAC will be part of critical accelerator infrastructure
- Need internal competence in HV pulsed technology
- CERN chose to make the modulator design with support of industry for the series manufacture
 - 800us prototype for RFQ teststand operational in 2008
 - 800us prototype for cavity teststand operational in 2010 (collaboration with RRCAT)
 - 1.8ms prototype for LINAC4 operational in 2011
 - Production contract awarded in February 2012


- Capacitor discharge with bouncer droop compensation
 - Switch: [4kV, 1.8kA] from ABB.
 - Pulse transformer: [110kV, 50A, 1.8ms, 2Hz] from Stangenes Industries inc.

- Capacitor discharge with bouncer droop compensation
 Advantages
- The power circuit is simple and reliable.
- No voltage ripple on the flat-top
- All electronic active devices are at medium voltage level
 Disadvantages
- Large pulse transformer and LC resonant bouncer for long pulses
- Limited number of suppliers for pulse transformer
- Not a 'modular' topology



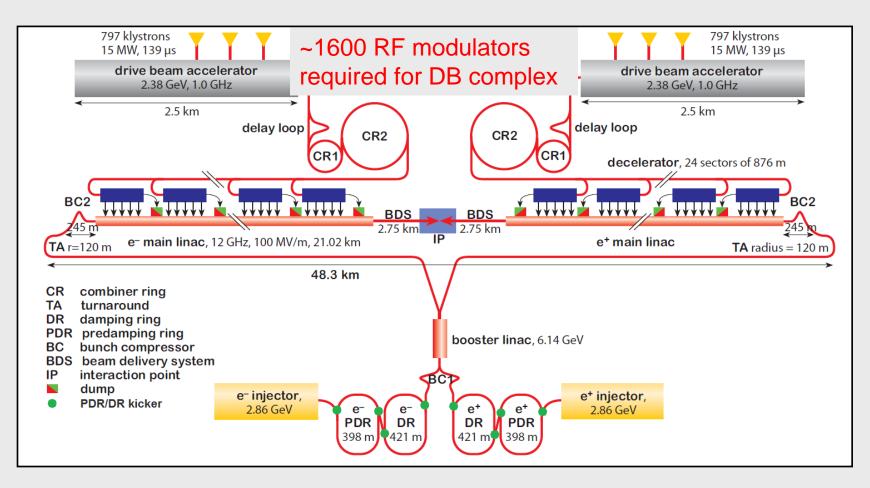
Modulator prototype [110kV, 50A, 1.8ms, 2Hz]

LINAC4

SPL Testbench

CERN R&D in superconducting 704MHz cavities

- Synergy with ESS requirements
- ESS is contributing the modulator to the teststand
 - Industrial supply according to ESS/CERN specification


Contract awarded in Jan 2012 for supply of modulator

- Capacitor discharge with bouncer droop compensation topology
- [115kV, 25A, 2.8ms ,20Hz]
- Specified to operate at [1.1ms ,50Hz] (constant average power)
- Detailed design study ongoing
- Delivery and commissioning expected in 2013

CERN Future projects - CLIC

CLIC : Drive Beam modulators

CERN Future projects - CLIC

Drive Beam RF requirements

Peak power/klystron	15 MW
Train length after injection	140 μs
Repetition rate	50 Hz
Klystrons efficiency	65% (70% target)
Phase precision	0.05° @ 1 GHz (first 10% of the DB linac) 0.2° @ 1 GHz (next 90% of the DB linac)
Nb of klystrons (DB linac)	2x 797 = 1594

- Leads to demanding modulator requirements
 - pulse reproducibility (<10ppm) and its measurement</p>
 - efficiency and low pulse rise time (>300MW total power in best case)
 - reliability (modular topologies with redundancy and low MTTR)

R&D program to demonstrate technical solutions

CERN Future projects - CLIC

Features of CLIC R&D program

- Initiating collaboration with several institutions
- Intend to build 2 full scale prototypes for 2017
- The prototypes will use different modulator topologies
- Important to have the right to use intellectual property for subsequent production for CERN use

Madulator's autout sular analifaction						
Modulator's output pulse specification						
Nominal pulse voltage	V_{kn}	150	kV			
Nominal pulse current	I_{kn}	160	A			
Pulse peak power	P_{mod_out}	24	MW			
Rise & fall times	t_{rise}, t_{fall}	3	μs			
Settling time	t_{set}	5	μs			
Flat-top length	t_{flat}	140	μs			
Repetition rate	REPR	50	Hz			
Voltage overshoot	V_{ovs}	1	%			
Precisions						
Flat-Top Stability	FTS	0.85	%			
Reproducibility (6kHz-4MHz)	PPR	10	ppm			
Efficiencies						
Charger electrical efficiency	η_{ch}	96	%			
PFS electrical efficiency	η_{pfs}	98	%			
Pulse efficiency	η_{pulse}	95	%			
Modulator global efficiency	η_{mod_global}	90	%			

Comparison of Modulators

ESS requirements v CERN long-pulse requirements

	ESS	SPL	LINAC4	CLIC
Max power/modulator	5 MW	2.9 MW	5.5 MW	23 MW
Average Power	270 kW	180 kW	20 kW	200 kW
Nominal voltage	100 kV	115 kV	110 kV	>150 kV
Pulse length	3.5 ms	2.8 ms (1.1ms)	1.8 ms	0.15 ms
Repetition rate	14 Hz	20 Hz (50 Hz)	2 Hz	50 Hz
Droop	1%	3%	1%	<1%
Nb of modulators	~110	1	14	~1600

In-house v commercial development

- In-house development allows CERN to confidently maintain and operate equipment for the long term
 - Enables personnel to be highly knowledgeable of technology in operation
 - Requires investment in people and test facilities
- When opting for industry solutions then important to be cautious of intellectual property and 'black box' approach
 - Can be problematic for long term operation of specialized equipment
 - However allows optimization of design for cost and production facilities
- LHC R&D and production model
 - Impose general topology
 - Purchase prototypes developed according to guidelines
 - Competitive tender on validated prototypes
 - All design data made available to CERN for long term support

Conclusion

- The ESS modulator requirements represents a similar financial investment as the power systems for the entire LHC!
 - The LHC powering was a 10year project from conception to installation
 - Due to good concept and design, excellent availability of power systems
- Experience both from CERN and other installations identify the modulator as an important contributor to machine reliability/availability
 - Appropriate topology choice and design effort is a good investment
- CERN is reviving competence in the design and specification of high voltage long-pulse modulators
 - LINAC4 facility will start beam commissioning in 2013
 - CLIC R&D will push specification and measurement boundaries
 - We look forward to following and supporting the ESS adventure, which has synergies with potential future projects (for example an SPL)

