# Development of Klystron Modulators for High Power RF/Microwave Systems for Particle Accelerators : RRCAT Experience





### Purushottam Shrivastava

Pulsed High Power Microwave Section Raja Ramanna Centre for Advanced Technology (RRCAT), Indore, India



# Contents

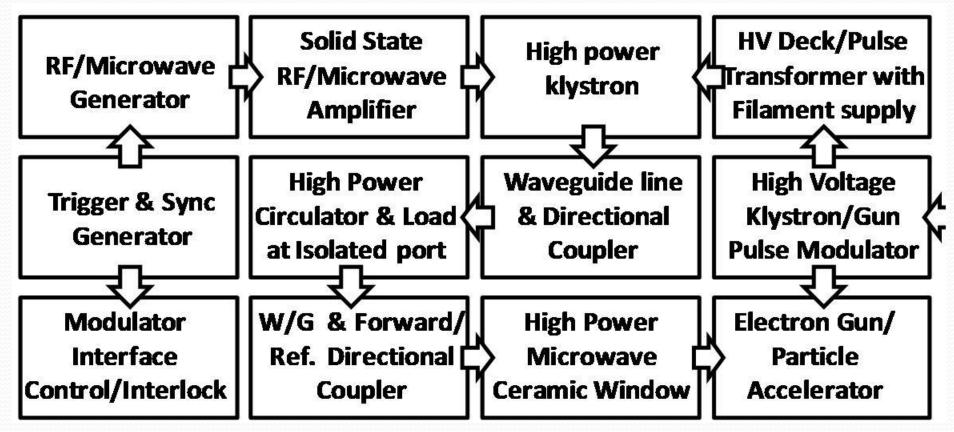
- Introduction
- Typical RF system for accelerators
- Solid state microwave amplifiers
- Pulse Modulator
  - Line type modulator
  - Solid state bouncer modulator R & D
  - Marx Modulator R & D
  - Converter Modulator R & D
  - Associated technologies development
- WR 2300 Waveguide components
- Results of systems built at RRCAT.
- Conclusion



# Introduction

- The pulse modulator stores the electrical energy, and then discharges a fraction or all of this stored energy into the load.
- The microwave tube converts the electrical energy received from the modulator into the RF/Microwave .
- The pulse modulated RF/Microwave generated from microwave tube is applied to a resonant accelerating structure/cavity.
- The characteristics and quality of the beam of particle accelerator depends on the high power pulsed RF/Microwave system.
- Various considerations on the rise time/fall time, flat top, ripple on pulse top, stored energy, efficiency, reliability and safety are the key factors in designing these high power systems.
- Electrical safety, fire safety and elimination of burn out is of prime importance.
- •Serious considerations for oil free construction.




• RRCAT has also taken up development of key technologies for advanced accelerators.

• A solid state bouncer modulator operating at 100kV, 20A was successfully designed, developed and supplied to CERN under Novel Accelerator Technology, (NAT) collaboration in LINAC 4 project. Further efforts on other advanced modulator design and construction are also underway.

• A 1.3 MW pulsed test stand at 352.2 MHz was successfully designed and developed to qualify devices, subsystems and components developed in-house for Indian as well as International collaboration projects.

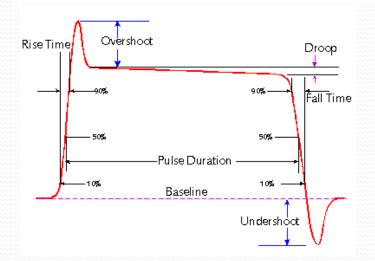
• Development of RF systems at 1.3 GHz as well as test set ups are in progress for SCRF technology development.





A typical klystron based microwave system




For a particular tube following considerations are important for selection/design of a modulator.

✓ Pulse duration

✓ Operating voltage and current ✓ Pulse repetition rate ✓ Pulse rise/fall times ✓ Spurious modes ✓ Tube protection (arcing of tube) ✓ Pulse flatness ✓Efficiency ✓ Cost, size & weight ✓ Reliability and maintenance ease ✓ Electrical and Fire safety

> ESS Kly Mod WS 24 April 2012 Purushottam Shrivastava RRCAT

# Practical pulse characteristics



# A CONTRACT OF A DIVANCED TECHNICIA

### **Status of RF/Microwave systems developed at RRCAT**

### Line type thyratron switched conventional modulators

|    | Device    | Parameters            | Machine/Use            | Status                        |
|----|-----------|-----------------------|------------------------|-------------------------------|
|    | 171 4     | PWR/f/V/I             | <b>303 4 3</b> 7       |                               |
| 1. | Klystron  | 5MW, 3µsec            | <b>20MeV</b>           | Operational                   |
|    |           | 2856MHz               | SRS Injector           | >19yrs                        |
|    |           | 127kV,86A             | RRCAT                  |                               |
| 2. | Magnetron | 2MW,2998 MHz          | 8/12MeV,               | <b>Operational &gt;17 yrs</b> |
|    |           | 41kV,100A,4µsec,200Hz | <b>Nuclear Physics</b> | Mangalore Uni.                |
| 3. | Magnetron | 2MW -,,               | 6/8/12MeV,             | R&D                           |
| 4. | Klystron  | 6MW,25 kW, S-Band     | 10MeV,10kW             | Operational                   |
|    |           | 14µsec,300Hz          | LINAC                  | 8 yrs.                        |
| 5. | Magnetron | 3MW,2998 MHz          | Test stand             | R & D                         |
|    |           | 55kV,120A,200Hz       |                        |                               |
| 6. | Klystron  | 45MW, 2856 MHz        | High Energy            | Construction                  |
|    | •         | 300kV4.5µsec,10Hz     | LINAC                  |                               |



# Indigenous microwave tube development (CEERI Collaboration) and associated test stations developed by <u>RRCAT.</u>

- 1. Klystron5MW,2856Test station developed and<br/>supplied by RRCAT to CEERI
- Magnetron 2MW, 2998
  42kV,110A
  5microsec
  250Hz
- Test station developed and supplied by RRCAT to CEERI.



Long pulse solid state klystron modulator develoment

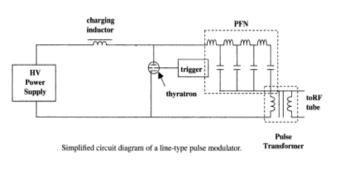
• Klystron 1.3MW, 352.2MHz 110kV/24A,800µsec

CERN LINAC4 Commissioned.

• Klystron 1 MW, 352.2MHz 3MeV RFQ Under tests. 100kV/20A,500µsec, 25Hz



Klystron modulator R & D and in-house developments


- a) 100kV, 20A, 1.6msec 10Hz Marx Modulator
- b) 100kV, 20A, 3msec, 10 Hz Converter Modulator.

**Component development:** 

- ✓ Optical drives
- ✓ Solid state high voltage switch R & D
- ✓ Pulse transformer design, development and tests.
- ✓ Fault protection systems.
- ✓ Computer control and data logging for modulator.



# Line-type modulators



### Main Parts

- Charging scheme
- Pulse forming network
- Thyratron/SCR switch
- Isolating element
- Pulse transformer
- Damping networks..



- Energy-storage device is essentially a lumped-constant transmission line so it is called line-type modulator.
- Pulse Forming Network (PFN) is charged to the required voltage.
- Switch (thyratron) is triggered and PFN delivers the all stored energy to load in the form of a rectangular pulse.
- Charging element (inductor) isolates the discharging circuit from the power supply during the pulse.



<u>6</u> 25

2856

±1 <1 <1

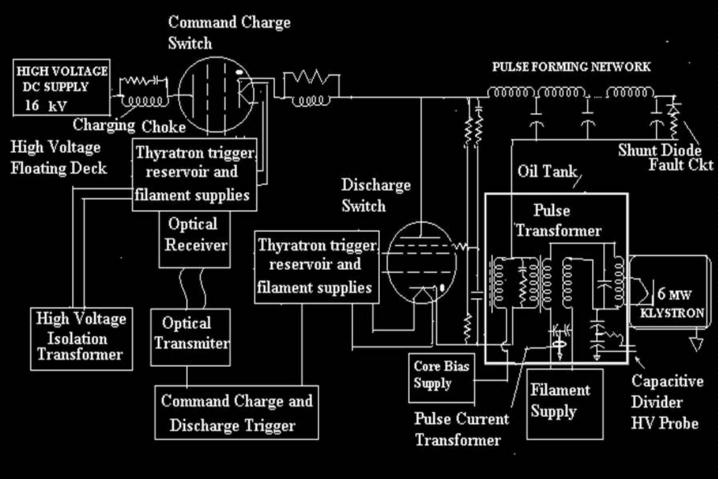
6 25

1x10<sup>-8</sup> 1x10<sup>-8</sup>

2856+/-5

**WR 284** 

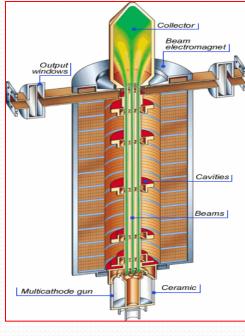
N type


12.5/6.8 300/800

# A 15 MW pulse modulator for 6 MW klystron: 10MeV, 10kW LINAC at RRCAT

| Microwave system specs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Peak o/p power MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Average o/p power kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Pulse repetition rate Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Pulse top variation%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Pulse rise time µS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Pulse-pulse stability %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| <b>Frequency stability</b> /day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| / °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Klystron specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| O/p power peak MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| O/p average kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| <b>Frequency</b> MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Pulse duration µS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Gain dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Beam voltage kV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Beam current Amp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Output W/G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| MICROWAVE<br>GENERAT OR       DRIVER<br>AMPLIFIER<br>& CTR CUL.       6MW, 25KW<br>SBAND<br>KLYSTRON       PULSE<br>TRANS & HV<br>DE CK         TRIGGER<br>SYNC.<br>GENERAT OR       HIGH<br>POWER<br>CIRCULATOR       FOR W.REF<br>COUPLER &<br>W/G RUN       55KV, 270A<br>KLYSTRON         DRV.<br>MODULAT OR       MICROWAVE<br>VACUUM<br>WINDOW       TRIGGER         DRV.<br>MODULAT OR       10MeV, 10kW LINAC       TRIGGER         SCHEMATIC OF 6MW S-BAND MICROWAVE SYST       SCHEMATIC OF 500 KV S-BAND MICROWAVE SYST         Modulator Specifications       Pulse output power       MW         Pulse output power       MW       15         Pulse voltage output       kV       55         Output impedance       Ω       200         Pulse duration       μS       15         Rise time       μS       <1         Fall time       μS       <2 |  |  |




## Schematic of the high power long pulse klystron modulator with command charging at RRCAT



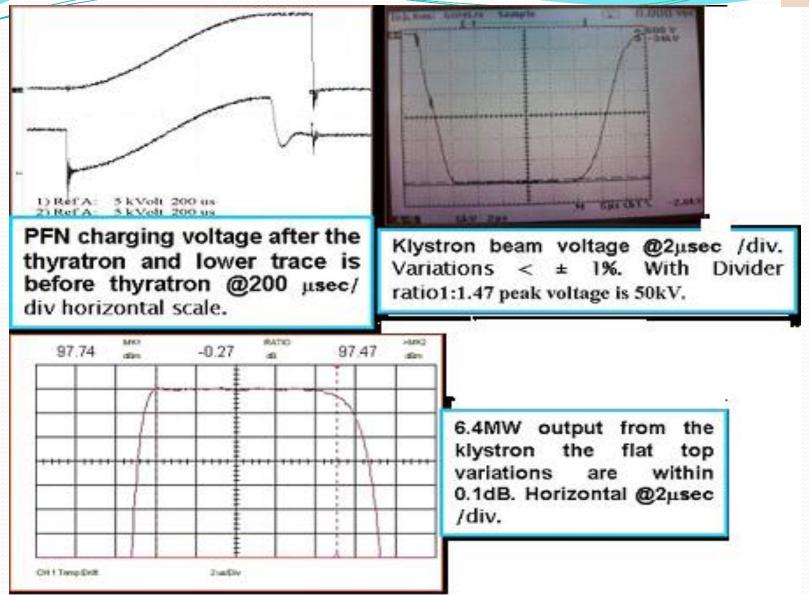




6MW Peak power S-Band Multi Beam klystron (MBK) without shield



An MBK schematic

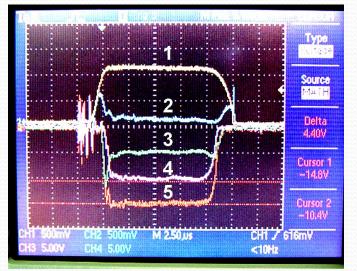

6MW Klystron based microwave system with modulator and microwave drive chassis for 10MeV LINAC



6MW Klystron with X ray shield connected to waveguide line to LINAC










## Microwave system for 10MeV LINAC



#### 10MeV Electron LINAC RRCAT

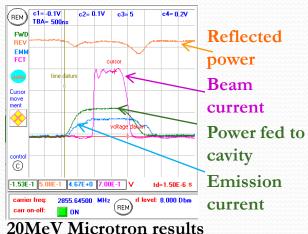


ESS Kly Mod WS 24 April 2012 Purushottam Shrivastava RRCAT



Electron beam on target

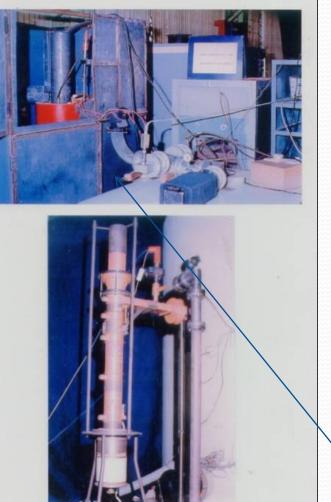
1.FORWARD POWER6MW2.REFLECTED POWER100kW3.FIRST TARGET PEAK BEAM CURRENT100mA4.SECOND TARGET BEAM CURRENT200mA5.TOTAL PEAK BEAM CURRENT300mA@10 MeV BEAM ENERGY




### MICROWAVE SYSTEMS DEVELOPED BY RRCAT



5MW peak power S Band pulsed klystron based microwave system for 20MeV Microtron pre-injector for Booster Synchrotron of Indus 2



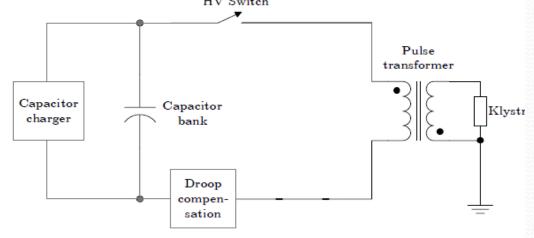



2MW Pulsed Magnetron based microwave system for 8MeV Microtron delivered to Mangalore University



## MICROWAVE TEST STANDS FOR INDIGENOUS TUBE DEVELOPMENT






2MW MAGNETRON HIGH POWER TEST STATION DEVELOPED BY (RR)CAT

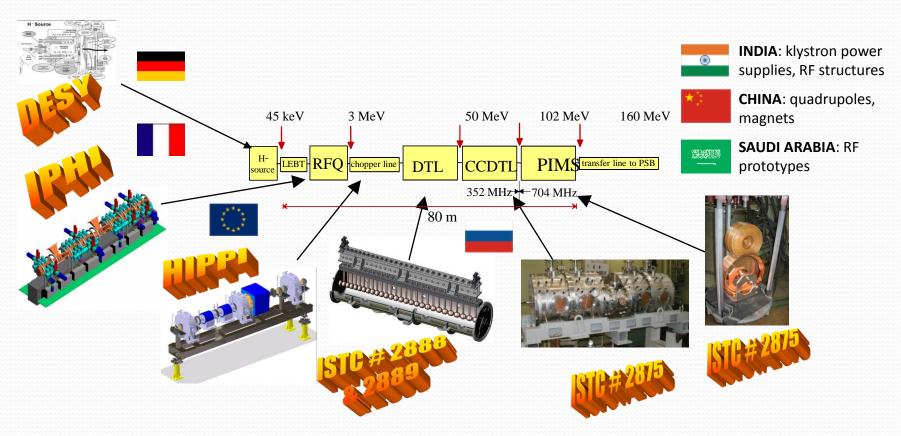
HIGH POWER TEST STATION DEVELOPED BY (RR)CAT, LOWER PHOTO IS THE FIRST 5MW INDIAN KLYSTRON



# Solid state hard switched modulator development



Main parts HV switch and optical drive Storage capacitors Bouncer droop compensation Pulse transformer Damping circuits


- The capacitor bank is charged to the required output voltage.
- HV switch is turned on and capacitor is discharged for required pulse duration and then turned off.
- A pulse appears at load during the discharge period.
- A bouncer circuit compensates the droop during discharge period. RRCAT proposed active compensation.



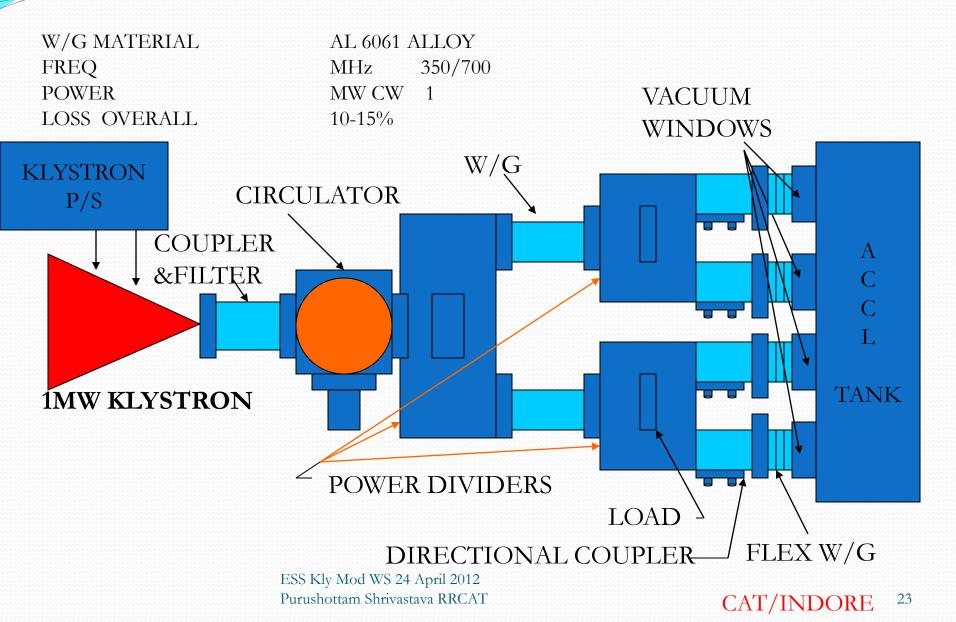
### 1MW CW Klystrons for proton LINAC at RRCAT

| Parameter                  | Unit       | <b>TH2098</b> |
|----------------------------|------------|---------------|
| Output power               | MW CW      | 1             |
| <b>Operating Frequency</b> | MHz        | 352.2         |
| -1dB Elct. BW              | MHz +/-    | 0.8           |
| Gain                       | dB         | 40            |
| Driver power max.          | W          | 200           |
| Efficiency                 | <b>⁰∕₀</b> | 70            |
| Beam Voltage               | kV         | <b>90</b>     |
| Beam Current               | Α          | 20            |
| Length                     | m max      | 4.8.          |
| Height                     | m          | 1.85          |
| Width                      | m          | 1.0           |
| Weight with magnet         | kg         | 2250          |
| Output waveguide           | WR 2300    | FH            |

# Collaboration with CERN :R&D on Linac4



Network of collaborations for the R&D phase, with the support of the EU-FP6 and ISTC, or in the frame of CERN-CEA/IN2P3 and CERN-India agreements.

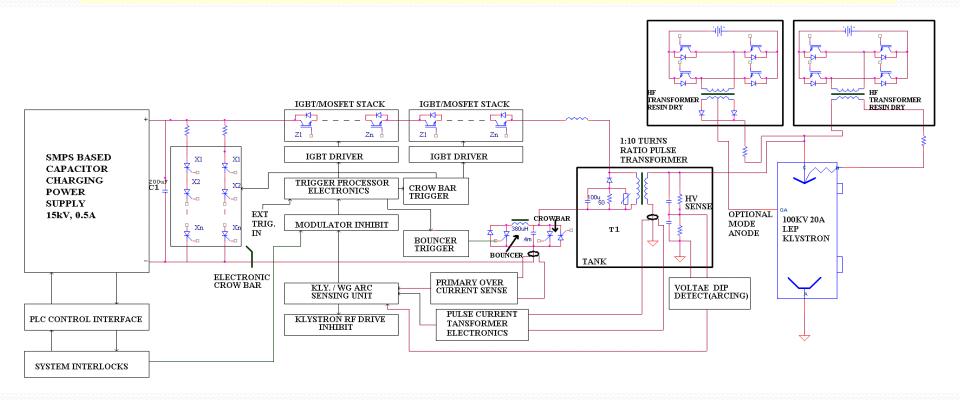

Courtesy : Dr. M. Vretenar, CERN.



# Specifications of 100kV Solid state bouncer modulator developed by RRCAT under DAE CERN NAT project

| Parameter                                                 | Value             |
|-----------------------------------------------------------|-------------------|
| Solid State Klystron modulator type                       | Bouncer           |
| High Voltage pulse amplitude                              | -10 kV to -110 kV |
| High Voltage pulse width measured at 70% to 70 % of peak. | 800 µsec          |
| Minimum Flat top available                                | 600 μsec          |
| Maximum current during pulse                              | 24 A              |
| Pulse repetition rate                                     | 2 Hz              |
| Acceptable voltage drop                                   | ≤1.0 %            |
| Allowed ripple on flat top (≥ 10 kHz)                     | <b>≤ 0.1 %</b>    |
| Rise time/fall time                                       | <100 µsec         |
| Energy dissipated in klystron arc                         | 10 J              |

TYPICAL RECTANGULAR WAVEGUIDE SYSTEM FOR PROTON LINAC




### Main Features of Bouncer Klystron Modulator :-

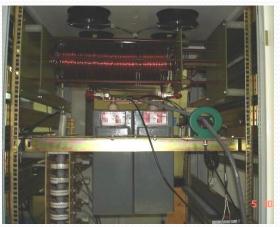
- Simplified Hard switch type design as compared to bulky PFN & difficult PFN tuning of Line type scheme.
- Klystron arc energy < 10J, Protection by fully controlled series switch.
- Reduced Main Capacitor size by using droop compensation design.
- Output voltage droop <1% by droop compensation using bouncer network</li>
- Excellent pulse to pulse stability
- Adjustable Bouncer switching time for droop compensation setting



### Solid State Modulator for LINAC 4 Project at CERN






### Solid State Modulator for LINAC 4 Project at CERN



Modulator connected to 110kV resistive load



Charging and filament supplies ESS Kly Mod WS 24 April 2012 Purushottam Shrivastava RRCAT



Bouncer elements and HV switch assembly



Interlock, control and trigger chassis.

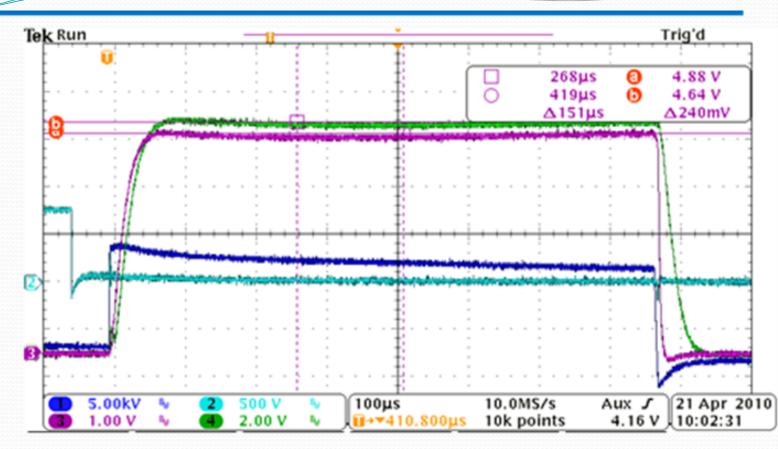


# **Bouncer Results**

### **Bouncer Specifications**

| Parameter                                             | Design Targets      | Achieved     |
|-------------------------------------------------------|---------------------|--------------|
|                                                       |                     | results      |
| Klystron modulator type                               | Solid state Bouncer | Solid state  |
|                                                       |                     | Bouncer      |
| High Voltage pulse amplitude                          | -10 kV to           | -10kV to     |
|                                                       | -110 kV             | -110kV       |
| High Voltage pulse width at 70% to 70 % of peak.      | 800 µsec            | 800 µsec     |
| Minimum Flat top available                            | 600 µsec            | 600 µsec     |
| Maximum current during pulse                          | 24A                 | 24A          |
| Pulse repetition rate                                 | 2Hz                 | 2Hz          |
| Acceptable voltage drop                               | $\leq 1.0$ %        | $\leq$ 1.0 % |
| Allowed ripple on flat top<br>(≥ 10 kHz)              | $\leq$ 0.1 %        | ≤0.1 %       |
| Rise time/fall time                                   | <100 µsec           | <80 µsec     |
| Limiting energy dissipated in klystron during its arc | <10 J               | <10 J        |
| Peak output power                                     | 2 MW                | 2 MW         |
| Average output power at 2 Hz<br>PRR                   | 3.2 kW              | 3.2 kW       |

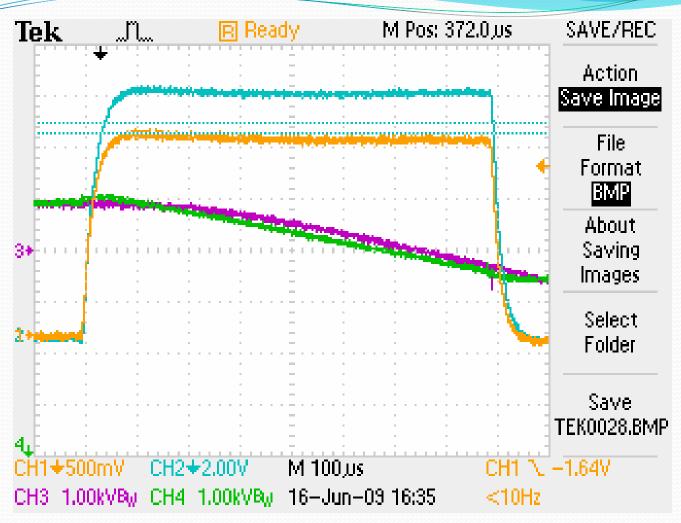
ESS Kly Mod WS 24 April 2012 Purushottam Shrivastava RRCAT नान पौराोक




### 100kV, 20A, 800us, 2Hz Bouncer Modulator

| Sl.No. | Main Component                                               | Parts with description                                                                                                               | Quantity |
|--------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1      | Charging power supply 12kV, 1A                               | Capacitor charging power supply 15kV, 1                                                                                              |          |
| 2      | Filament power supply 30V, 35A with 120kV floating terminals | Floating power supply 30V, 35A                                                                                                       | 1Nos.    |
| 3      | Modulating Anode power supply                                | DC power supply 40kV, 15mA                                                                                                           | 1Nos.    |
| 4      | Pulse transformer unit                                       | Pulse transformer 110kV, 1:10, 2 Hz                                                                                                  | 1Nos.    |
|        |                                                              | Biasing Supply (10V, 10A DC power supply)                                                                                            | 1Nos.    |
| 5      | Undershoot network                                           | Resistors 500hms, 20kV, 250 W each                                                                                                   | 4Nos.    |
|        |                                                              | Diodes 20kV, 750 A pk                                                                                                                | 1Nos.    |
|        |                                                              | Capacitor                                                                                                                            |          |
| 6      | Main Switch                                                  | IGCT based stacked switch assembly (20kV, 300A),                                                                                     | 1 Nos.   |
|        |                                                              | Drivers auxiliary power supplies                                                                                                     | 1 set    |
|        |                                                              | 20kV, Isolation transformers for auxiliary supply                                                                                    | 1 set    |
|        |                                                              | Optical driver unit                                                                                                                  | 1Nos.    |
|        |                                                              | Optical fiber cables with connectors (1m length)                                                                                     | 1 set    |
| 7      | Safety Discharge Device                                      | 25 kV Electromagnetic relay with auxiliary contacts                                                                                  | 1Nos.    |
|        |                                                              | Resistors 1kOhms, 250W, 20kV, 10kJ each                                                                                              | 2 Nos.   |
| 8      | Crowbar 1 Network                                            | 24kV, 8 kApk SCR based switch                                                                                                        | 1Nos.    |
|        |                                                              | Diode 20kV, 750 Apk Behlke make (FDA 200-75A)                                                                                        | 1Nos.    |
|        |                                                              | Resistors 50 Ohms, 20kV, 2 kApk each                                                                                                 | 4 Nos.   |
| 9      | Main Capacitors                                              | 55 uF, 15kV                                                                                                                          | 2 Nos.   |
| 10     | Bouncer network                                              | Capacitors 100uF, 3kV, 10A avg., 500A pk each                                                                                        | 2 Nos.   |
|        |                                                              | IGBT Switch 2400V, 600Apk , 400A DC                                                                                                  | 1Nos.    |
|        |                                                              | Inductor 650 uH, 20 A rms, Air core                                                                                                  | 1Nos.    |
| 11     | Control, Interlock and other auxiliary items                 | Cabinets, sub racks, high voltage cables, high voltage connectors, low voltage cables, low voltage connectors, electronic cards etc. |          |




#### Waveforms of 100kV, 20A, 800us, 2Hz Bouncer Modulator



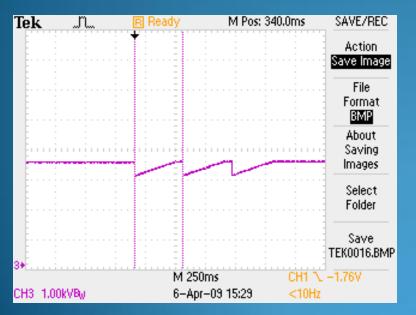
- 1: Primary high voltage terminal signal w.r.t. ground on normal scale (5kV/div.)
- 2: Bouncer switch voltage signal on normal scale (500V/div.)
- 3: Primary current signal (0.05V / 2A) on normal scale (1V/div.)
- 4: Secondary output voltage signal (10000: 1) on normal scale (2V/div.)



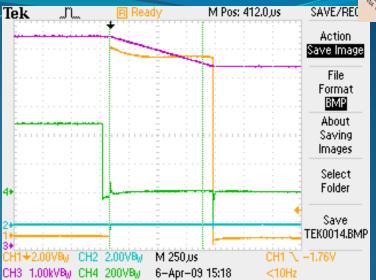
#### Waveforms of 100kV, 20A, 800us, 2Hz Bouncer Modulator



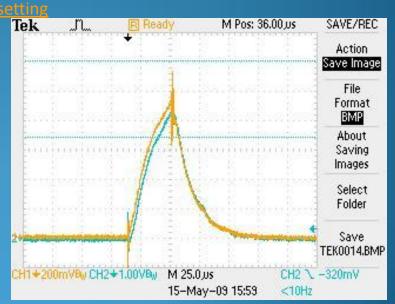
CH1 : Load current signal (CT factor = 0.1V/A)


- CH2 : Output voltage signal (Divider Ratio = 10400 : 1)
- CH3 : Bouncer voltage signal using Tek Probe (1000:1) ESS Kly Mod WS 24 April 2012 CH4 : Main Gapacitor supplications of the probe (1000:1)

### Modulator fast fault protection circuit testing for different faults

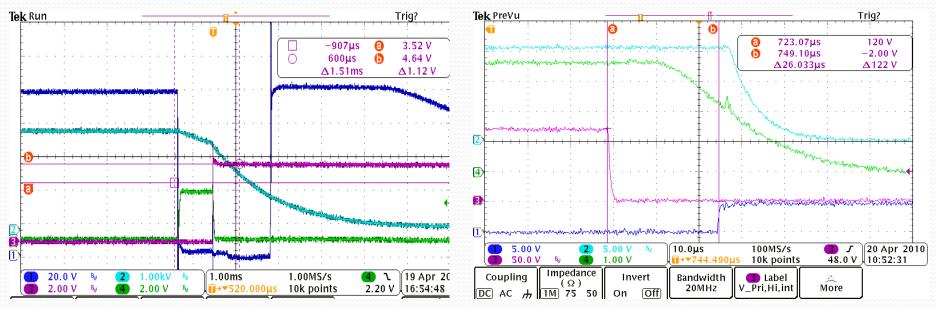






#### Pulse shut off due to 'Short circuit' fault @ 100 A setting



## Pulse shut off due to 'Pulse repetition rate overrun' fault @ 3 Hz setting

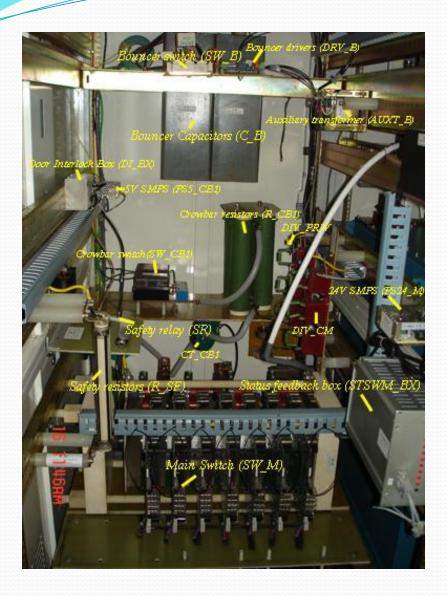


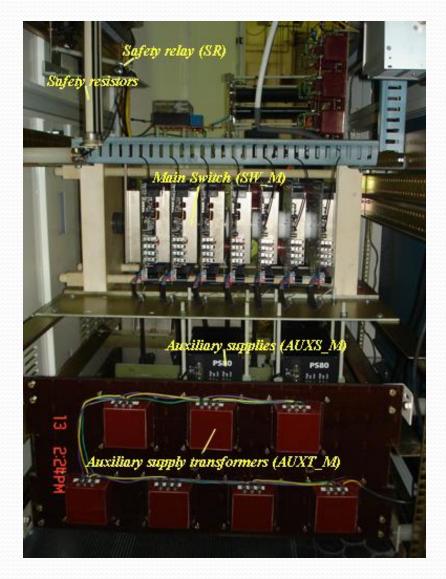

#### Pulse shut off due to 'Pulse width overrun' fault @ 850 us



Pulse shut off due to 'Overvoltage fault' @ 40kV setting

### Modulator fast fault protection circuit testing for different faults





- <u>Crowbar action & Pulse inhibit due to 'Pulse width</u> overrun' fault @ 1ms pulse width setting
- <u>Crowbar action & Pulse shut off due to 'Under</u> voltage' detection at 750us

कात प्रौद्योगिक

### Photographs of Modulator components

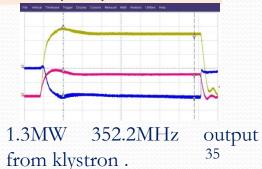






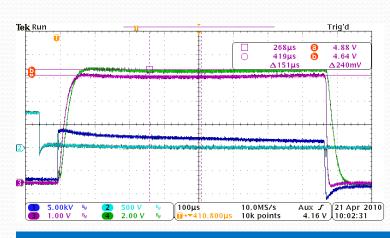


### **India-CERN** Collaboration in LINAC 4


Two klystrons received earlier were tested to >1MW pulsed output power at 352.2 MHz at high power test stand developed at RRCAT.



Labview based modulator control and DAQ system




1 MW 352.2 MHz Test Stand with LEP TH 2089 Klystron and 100kV All solid state bouncer modulator developed by RRCAT





Solid State Modulator for LINAC 4 Project at CERN The solid state bouncer modulator prototype for LEP 1 MW klystrons for LINAC 4 project at CERN was designed, developed and commissioned. Modulator passed all tests at CERN and accepted. Currently it is in use at CERN at SM18 Hall.



Results of acceptance tests at CERN. 100kV, 20A, 800 µsec, 2 Hz



100kV RRCAT modulator during acceptance tests at CERN.



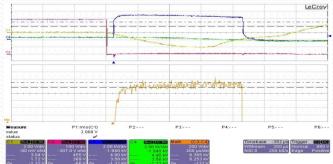


### RRCAT Bouncer Modulator at CERN SM18 Hall

ESS Kly Mod WS 24 April 2012 Purushottam Shrivastava RRCAT Courtesy: David Nisbet, CERN



## 100 kV 500 microsecs, 25Hz solid state bouncer modulator for 3MeV H- pulsed RFQ at RRCAT



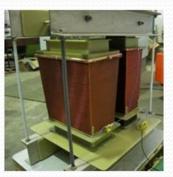

### Integrated modulator system



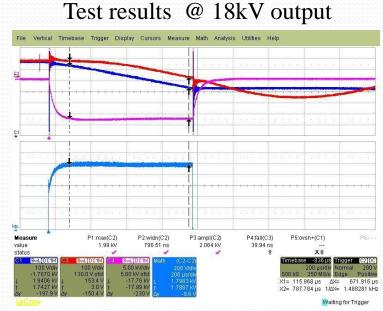
Storage and bouncer capacitors

Test results without bouncer @ 10kV operation. C1: Main capacitor voltage, C2: Primary side load current signal, C3 : Load voltage signal, C4 : Primary side load current signal with CT 410




Test results with bouncer @ 7kV operation C1: Bouncer current signal, C2: Bouncer switch voltage signal, C3 : Load voltage, C4 : Bouncer voltage signal. Math : Voltage across load (C3-C4) on expanded scale (±1% variation)

**RRCAT** made HV Switch

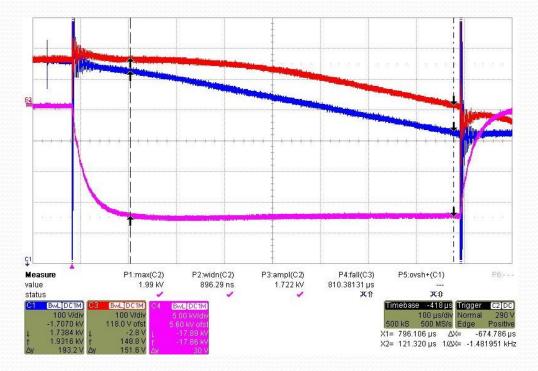



## Pulse transformer R & D efforts at RRCAT

| Parameter                     | Stage 1<br>Values | Stage 2       | Stage 3    |
|-------------------------------|-------------------|---------------|------------|
| Ratio                         | 1:10              | 1:10          | 1:10       |
| Max.<br>Secondary<br>voltage  | -100 kV           | -100 kV       | -100 kV    |
| Pulse width<br>@ 100kV        | 200 us            | <b>500 us</b> | 1.6 msec   |
| Rise time<br>@ 5k Ohm<br>load | < 80 µsec         | < 100 µsec    | < 150 µsec |
| PRR max.                      | 2 Hz              | 25 Hz         | 25 Hz      |



RRCAT 100kV Pulse Transformer prototype




- C1 : Main Capacitor voltage at 2kV
- C2 : Primary high side with respect to ground
- C3 : Bouncer capacitor voltage
- C4 : Secondary output voltage at 5k Ohms load Math : Primary voltage (C2 –C3)



### <u>Test results of Bouncer compensated Pulse Modulator with Pulse transformer (1:10) and secondary load of 5kΩ</u> <u>800μs Pulse output of 18kV</u>

- C1: Main Capacitor voltage (2 kV with 1000 : 1 voltage divider)
- C2 : Primary high side voltage w.r.t. ground ('Channel Off', 1000 : 1 Tek probe)
- C3 : Bouncer voltage (140 V with 1000 : 1 Tektronix probe)
- C4 : Load voltage (-17.9 kV with 1000 : 1 Tektronix probe)



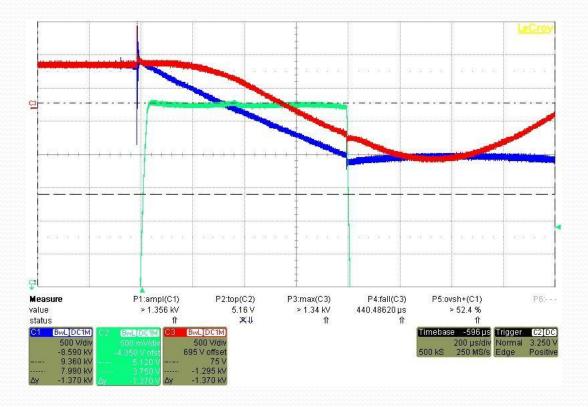


### High Voltage Resistive Load Assemblies made at RRCAT



Modulator output connected to Dummy load of 5kOhms, 100kV, 4kW




Dummy load of 5kOhms, 100kV, 17kW (without oil cooling) & 100kW with oil cooling. Oil tank not shown



Load of 5kOhms, 100kV, 40kW with water cooling

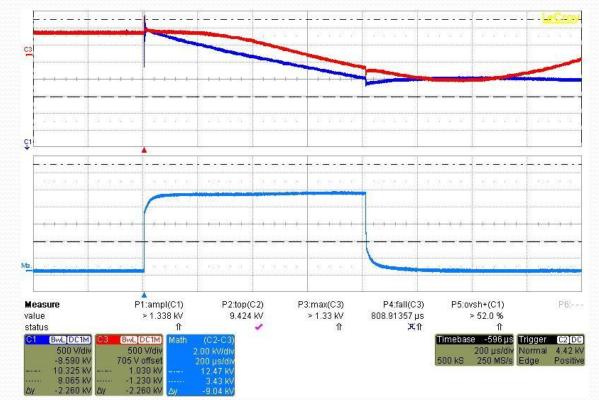
Primary side Test results of Pulse Modulator with IGBT based switch & bouncer compensation (a) 10kV operation Primary side equivalent load =  $50\Omega$ 

- C1: Main Capacitor voltage (10 kV with 1000 : 1 voltage divider)
- C2 : Load current (204A with 25 mV / A current transducer)
- C3 : Bouncer voltage (700 V with 1000 : 1 Tektronix probe)



ESS Kly Mod WS 24 April 2012 Purushottam Shrivastava RRCAT न्ता प्रगत प्रौद्योगिकी क्षे

the many and black the and the second s


Primary side Test results of Pulse Modulator with IGBT based switch & bouncer compensation @ 10kV operation Primary side equivalent load =  $50\Omega$ 

C1: Main Capacitor voltage (10 kV with 1000 : 1 voltage divider)

C2 : Primary high side voltage w.r.t. ground ('Channel Off', 1000 : 1 Tek probe)

C3 : Bouncer voltage (700 V with 1000 : 1 Tektronix probe)

Math (C2-C3) : Load voltage with equivalent load of  $50\Omega$  in primary side





# Bouncer Modulator case studies:



| Parameter                     | Values              |
|-------------------------------|---------------------|
| Klystron modulator type       | Solid state Bouncer |
| High Voltage pulse amplitude  | -10 kV to           |
|                               | -110 kV             |
| High Voltage pulse width at   | 3.3 msec            |
| 70% to 70 % of peak.          |                     |
| Minimum Flat top available    | 2.8 msec            |
|                               |                     |
| Maximum current during pulse  | 50A                 |
|                               |                     |
| Pulse repetition rate         | 15 Hz               |
| Acceptable voltage drop       | $\leq$ 1.0 %        |
| Allowed ripple on flat top    | $\leq$ 0.1 %        |
| (≥ 10 kHz)                    |                     |
| Rise time/fall time           | < 500 µsec          |
| Peak output power             | 5 MW                |
|                               |                     |
| Average output power at 15 Hz | 262.5 kW            |
| PRR                           |                     |

ESS Kly Mod WS 24 April 2012 Purushottam Shrivastava RRCAT नाम पौराणित

# A THE FOR ADVANCED TECHNICA

### Advantages

✓ Simple Hard switch type design as compared to PFN based Line type scheme

✓ Output voltage droop <1% by using simple droop compensating bouncer network

✓ Reduced Main Capacitor size by using droop compensation design.

✓ Klystron arc protection by fully controlled series switch and crowbar network.

✓ Excellent pulse to pulse stability

✓ Flat top ripple < 0.1%

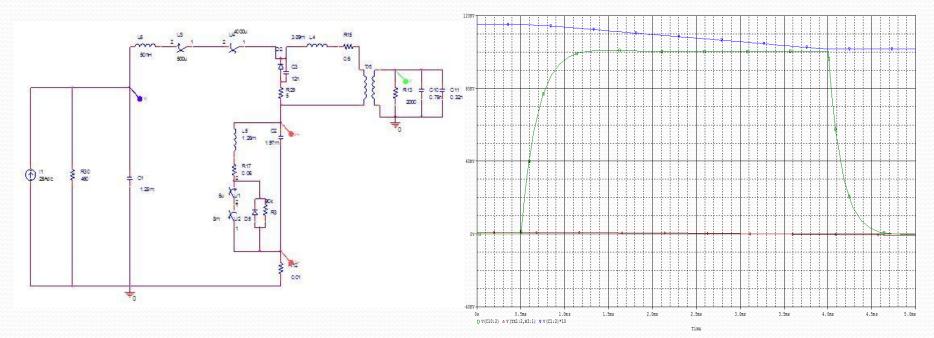
### **Limitations**

•The bouncer compensation has limited range for variations in load. For load variation  $>\pm 10\%$ , the flat top is difficult to maintain.

• Pulse width cannot be increased above design value by more than 10% for allowed droop range.

•Due to voltage limitations of solid state switches and other components, the pulse transformer is essentially required whose parasitic elements like magnetising inductance, leakage inductance & distributed capacitance affects the performance and efficiency.

### **Disadvantages**


>The cost and size increases too much as the output pulse width increases.

Less flexible from load and pulse width point of view.

Stored energy is higher and requires extra protections for load arcing.



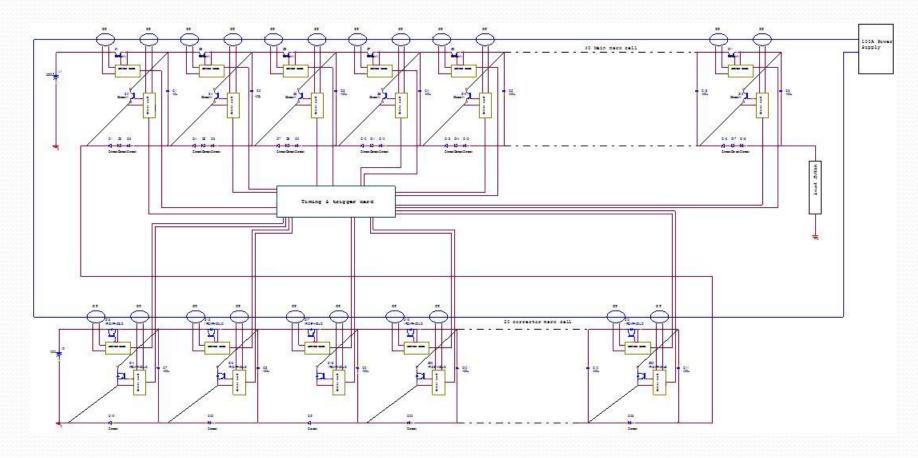
### Design and simulation result of 100kV, 50A, 3.5ms, 15Hz Bouncer Modulator



Green : Output voltage with  $\pm 0.37\%$  Flat top (0.73% total variation,  $t_r = 400\mu s$ ) Blue : Main Capacitor voltage (Scaled to 10 times, 11.9% droop) Red : Bouncer Capacitor voltage

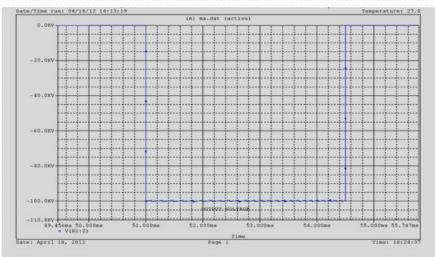


### 100kV, 50A, 3.5ms, 15Hz Bouncer Modulator


| Sl.No. | Main Component                         | Parts with description                                                        | Quantity |  |  |  |  |  |
|--------|----------------------------------------|-------------------------------------------------------------------------------|----------|--|--|--|--|--|
| 1      | Charging power supply 12kV, 25A        |                                                                               | 1Nos.    |  |  |  |  |  |
| 2      | Filament power supply with 120kV       |                                                                               | 1Nos.    |  |  |  |  |  |
|        | floating terminals                     |                                                                               |          |  |  |  |  |  |
| 3      | Modulating Anode power supply          |                                                                               | 1Nos.    |  |  |  |  |  |
| 4      | Pulse transformer unit                 | Pulse transformer 110kV, 1:10, 15 Hz with water cooling                       | 1Nos.    |  |  |  |  |  |
|        |                                        | Biasing Supply                                                                | 1Nos.    |  |  |  |  |  |
| 5      | Undershoot network                     | Resistors 50Ohms, 20kV, 1kW each                                              |          |  |  |  |  |  |
|        |                                        | Diodes 20kV, 1000 Apk, 50 A RMS                                               |          |  |  |  |  |  |
|        |                                        | Capacitor 1uF, 20kV pk each                                                   | 2 Nos.   |  |  |  |  |  |
| 6      | Main Switch                            | IGCT / IGBT based stacked switch assembly (20kV, 600A) with water cooling     | 1 Nos.   |  |  |  |  |  |
|        |                                        | Drivers auxiliary power supplies                                              | 1 set    |  |  |  |  |  |
|        |                                        | 20kV, Isolation transformers for auxiliary supply                             | 1 set    |  |  |  |  |  |
|        |                                        | Optical driver unit                                                           | 1Nos.    |  |  |  |  |  |
|        |                                        | Optical fiber cables with connectors (1m length)                              | 1 set    |  |  |  |  |  |
| 7      | Safety Discharge Device                | 25 kV Electromagnetic relay with auxiliary contacts                           | 1Nos.    |  |  |  |  |  |
|        |                                        | Resistors 1kOhms, 250W, 20kV, 10kJ each                                       | 10Nos.   |  |  |  |  |  |
| 8      | Crowbar 1 Network                      | 24kV, 16kApk SCR based / Thyratron switch                                     | 1Nos.    |  |  |  |  |  |
|        |                                        | Diode 20kV, 1000APk                                                           | 1Nos.    |  |  |  |  |  |
|        |                                        | Resistors 10 Ohms, 20kV, 2 kApk each                                          | 10 Nos.  |  |  |  |  |  |
| 9      | Main Capacitors                        | 100uF, 15kV, 10A rms, 100 A pk each                                           | 12 Nos.  |  |  |  |  |  |
| 10     | Bouncer network                        | Capacitors 200uF, 3kV, 40A rms, 250A pk each                                  |          |  |  |  |  |  |
|        |                                        | IGBT / SCR Switch 3000V, 2400Apk , 800A DC                                    | 1Nos.    |  |  |  |  |  |
|        |                                        | Inductor 1.26 mH, 400 A rms                                                   | 1Nos.    |  |  |  |  |  |
| 11     | Control, Interlock and other auxiliary | Cabinets, subracks, high voltage cables, high voltage connectors, low voltage |          |  |  |  |  |  |
|        | items                                  | cables, low voltage connectors, electronic cards etc.                         |          |  |  |  |  |  |

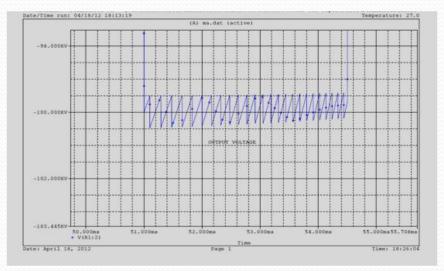


# Marx Modulator case studies:




# Schematic Diagram






### Output voltage



|       | //IIMe IO     | 11: 04/1   | 0/12 | 16:15:   | . 1.9 |      |   |    | (A) m | a.dat | (act | ive) |       |      |     |   |      |    | 1    | emper | ature | ; 2 |
|-------|---------------|------------|------|----------|-------|------|---|----|-------|-------|------|------|-------|------|-----|---|------|----|------|-------|-------|-----|
| 22    | 0             | 1 1        | 1    | 1        | 1     | :    | 1 | 1  | 1     | 1 :   | -    | 1    |       | 1    | 1   | - | 1    | 1  | :    | 1     | 1     | ;   |
|       |               | Ļ          |      |          |       |      |   |    |       |       |      |      |       |      |     |   |      |    |      |       |       | 1   |
|       |               | ÷          |      |          |       |      |   | ·  |       | ·     |      |      |       | +    |     |   |      |    | ļ    |       |       | +   |
|       |               | ++         | ·+   |          |       | +    |   |    | +     | +     |      |      |       | +    |     |   |      | -+ |      |       |       | ÷   |
| X   - | 10.0          |            |      |          |       |      |   |    |       |       |      | _    |       |      |     |   | +    |    |      |       |       | 1   |
| 22    |               | Ļ          |      |          |       |      |   |    |       |       |      |      |       | ļ    |     |   |      |    | ļ]   |       |       | 1   |
| 22    |               | ÷i         |      |          |       |      |   | ·  |       | ·     |      |      |       |      |     |   |      |    | ļ    |       |       | ÷   |
|       |               | ++         |      |          |       |      |   |    |       | +     |      |      |       | +    |     |   |      |    |      |       |       | ÷   |
| X -   | 20.0          |            | 1    |          |       | 1    |   |    | 1     |       |      |      |       | 1    |     |   |      | 1  |      |       |       | İ   |
| 20    |               | ļļ         | 1    |          |       |      |   |    |       |       |      |      |       |      |     |   |      |    | []   |       |       | Ţ   |
| 20    |               | ÷          | .+   |          |       | ·    |   |    |       |       | +-   |      |       | ++   |     |   |      | -+ | +    |       |       | ÷   |
|       |               | +          | +    |          |       |      |   |    |       | ++    |      |      |       | +    |     |   |      | +  |      |       |       | ÷   |
| 8 -   | 30.0          | ii         | 1    |          |       | İ.   | i |    | 1     |       |      |      | _     | 1    |     |   |      | 1  | İ.   |       |       | İ   |
|       |               | ļļ.        | 1    |          |       |      |   |    |       |       |      |      |       | ļ    |     |   |      |    | ļ]   |       |       | Į.  |
|       |               | ÷+         |      |          |       |      |   | ·  |       | +     |      |      |       | ÷    |     |   |      |    |      |       |       | +   |
|       |               | ÷+         |      |          |       | +    |   |    |       | +     |      |      |       | +    |     |   |      |    |      |       |       | ÷   |
| 2 -   | 40.0          | L          |      |          |       |      |   |    |       |       |      |      |       |      |     |   |      |    |      |       |       | İ.  |
|       |               | <b>↓</b> ↓ |      |          |       | l    |   |    |       |       |      |      |       |      |     |   |      |    | I    |       |       | 4   |
|       |               | ++         |      | <u> </u> |       |      |   |    |       | +     |      |      |       | +    |     |   |      | ·  |      |       |       | +-  |
|       | 50.0          | ++         |      |          |       | +    |   |    |       | ++    |      |      |       |      |     |   |      |    | +    |       |       | ÷   |
| X   - | 50.0          | I          |      |          |       | 1    |   | i. |       | 1     |      | 1    | 1     |      | 1   |   |      | 1  |      |       |       | J.  |
|       |               | Ļļ         |      |          |       |      |   |    |       |       |      | ot   | ripot | CURF | ENT |   |      |    |      |       |       | 1.  |
|       | 55.6<br>063ms | <u> </u>   | 10.0 | 00ms     |       | 48.0 |   |    |       | 000ms |      |      | .000m |      |     |   | 00ms |    | 56.0 |       | 58.   |     |

ESS Kly Mod WS 24 April 2012 Purushottam Shrivastava RRCAT



#### **Features:**

• Oil free design.

•Lower IGBT currents.

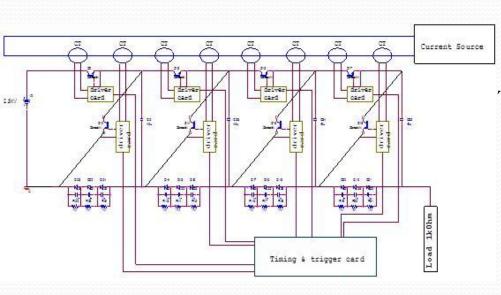
•Pulse duration can be easily controlled by switching low voltage circuit.

•Finer waveform control.

•Transformer Less topology.

•Low DC voltage.

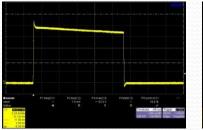
•Suitable design for wide range of voltage rating. Current and pulse duration.

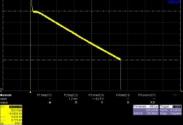

Limitation:

•IGBT driver circuits float at high voltage during pulse which is needed to be isolated.

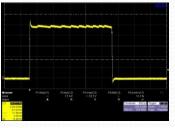
•There is ripple in output voltage that has to be addressed.




### Prototype 10kV Marx cell first results





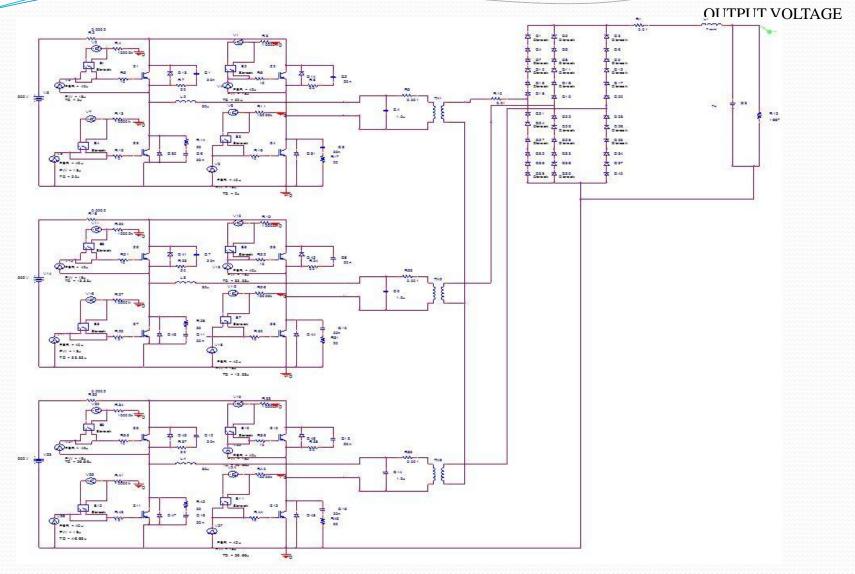

### Tests on Marx cell with droop compensation networks





10kV pulse without correction





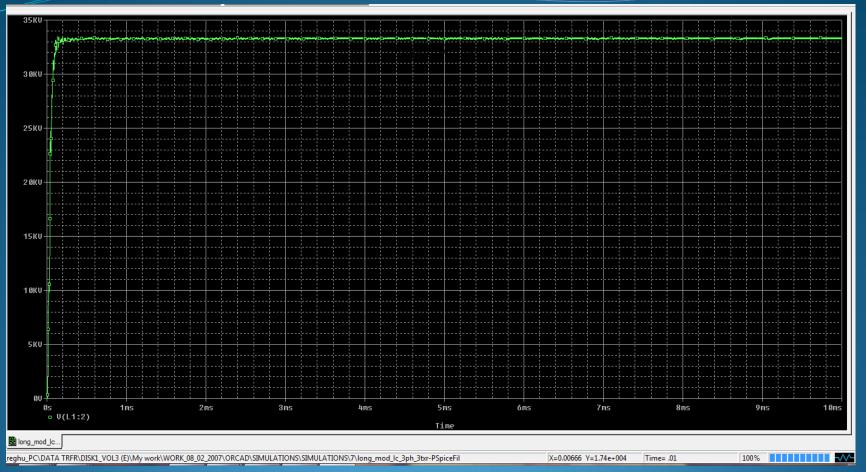

10kV pulse with correction



# Converter Modulator case studies:

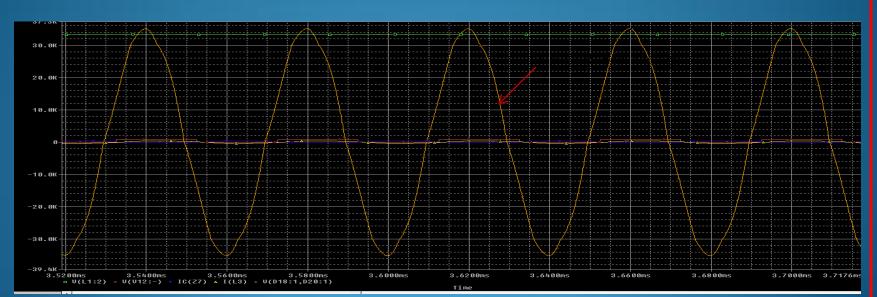


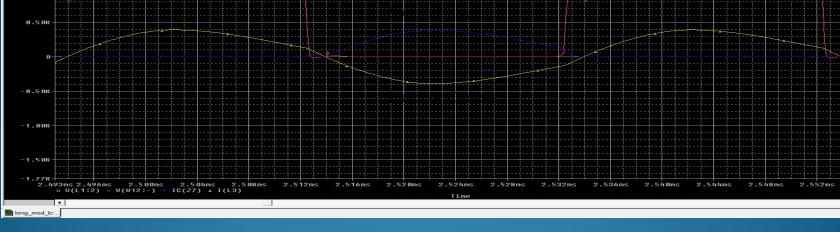



33 kV/20A PROTOTYPE CIRCUIT SIMULATION ESS Kly Mod WS 24 April 2012 Purushottam Shrivastava RRCAT



100 kV/20A Long pulse (5 ms) converter modulator output voltage






OUTPUT VOLTAGE WAVE FORM ACROSS 1667  $\Omega$  LOAD

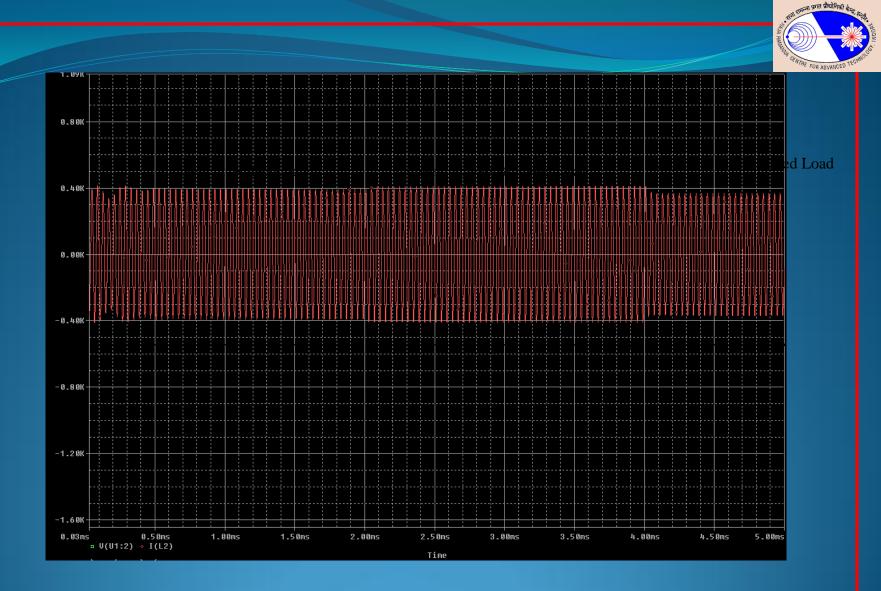
#### WAVE FORM AT THE SECONDARY OF HF TXR





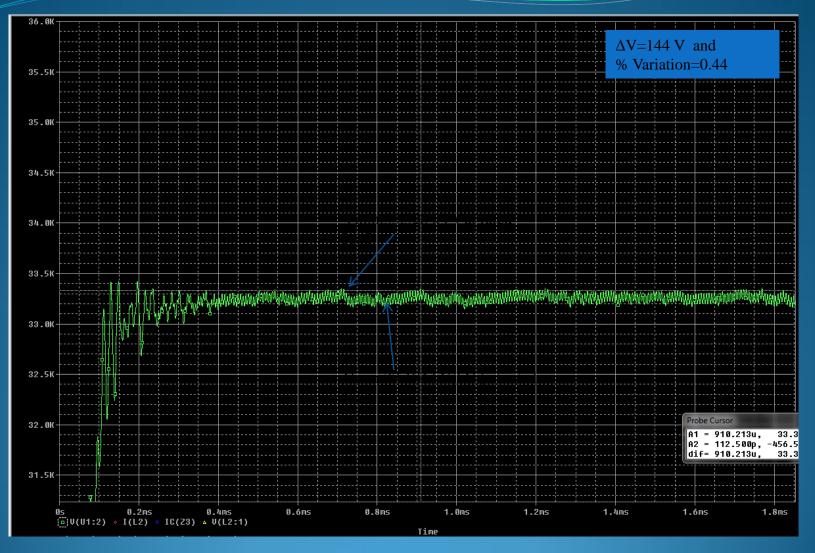
1.50K

1.008


राजी रामन्ता प्रगत प्रौधोगिकी केन्द्र

CENTRE FOR ADVANCED

#### WAVE FORM ACROSS THE IGBT SWITCH



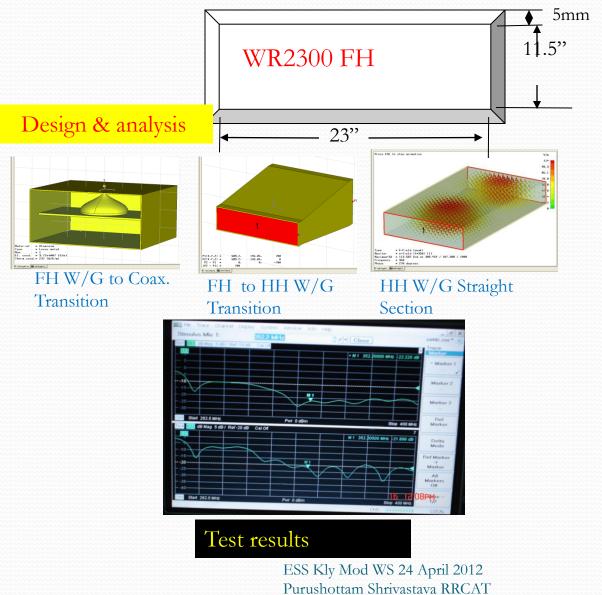

33 kV/20A Modulator O/P Voltage Waveform with ±10% Load Change



33 kV/20A Modulator resonant inductor current Waveform with ±10% Load Change






33 kV/20A Converter Modulator Output Voltage



# R & D efforts on the High Power Waveguide and solid state pulsed microwave amplifiers



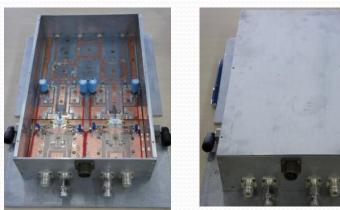
WR 2300 Waveguide Components Design, Simulation, Fabrication and Tests for CERN LINAC 4 and RRCAT H- LINAC Project





components




# **Pulsed Solid State Amplifier development**



Power Measurement Module for VTS



1.3GHz, 250W pulsed amplifier



1.3 GHz 500W amplifier module assembly300W S Bandwith divider/combinerESS Kly Mod WS 24 April 2012amplifier modulePurushottam Shrivastava RRCAT





1:4 Divider/combiner @ 2856MHz



# Conclusion

• A large reservoir of experience in design, development and commissioning of conventional and state of the art modulators, high power pulsed RF/Microwave components and systems, is getting accumulated at RRCAT.

 Systems developed in-house have been performing satisfactorily in the Indian accelerator environment.
 Constant upgrade with latest technology is a continuous process.

•Bilateral collaborations are crucial for faster, reliable and cost effective developments. We welcome collaboration with ESS on mutually beneficial areas.



# Thanks