

EUROPEAN SPALLATION SOURCE

Equipment Validation

Markus Olsson

Mechanical Engineer Neutron Chopper Group

www.europeanspallationsource.se 14-11-21

Overview

- Why, What, When?
- Equipment validation process
- Example case: Automatic Test sequence
- Data acquisition
- Report
- Summary

Why validate equipment?

- Ensure performance
- Ensure compatibility
- Make integration smoother

What is validated?

- Compatibility and performance:
 - Sub system
 - Mechanical parts
 - Drive/Spindle
 - Control system and software
 - Support systems vacuum, cooling
 - Interfaces
 - Entire system
 - Chopper performance

When is equipment validated?

- Evaluation of equipment
 - spindles
 - sensors
 - vacuum pumps
- Verification during development
 - rotor
 - coating
- Validation of supplied equipment
- Validation after overhauling and commisioning

Example of Equipment validation process

equipment and interfaces are verified between subsystems.

Test sequence Data aquisition Data analysis

Interpreting results and assure the

quality

Neutron Chopper demonstrator Test sequence and monitoring system

Example case: Automatic test sequence

- Create a baseline for a chopper system
- Determine how repeatable the process is
- Understand system
 properties and changes
- Different systems can be compared
- Increases efficiency of validation process

Example case: Test sequence

EUROPEAN SPALLATION

SOURCE

Analysis and reporting

- Analysis made automatically
 - Phase accuracy
 - Speed profile vs vibrations
 - FFT
 - Temperatures
 - Vacuum pressure
- Test report
 - PDF automatically generated and available on server after each run.

Report: Phase accuracy

- **Trueness**, indicates that the process is well centred.
- **Precision**, indicates the spread of the process
- **Ppk (Process Performance Index),** indicates the capability of the process

Higher Ppk gives higher performance:	
Ppk	Within spec (%)
0.5	86.8
0.8	98.4
1.0	99.7
1.333	99.9937
1.667	99.99994
2.0	99.9999998

EUROPEAN SPALLATION

SOURCE

Report: Vibration vs speed

- To tie vibrations to actual speeds and speed changes
- Determine the vibration amplitudes and differences between cycles and systems
- Determine the repeatability of the system
- Comparison with baseline

EUROPEAN SPALLATION

SOURCE

Report: System Validation Vibration Frequency Analysis

- Determine system normal behaviour and anomalies
- Identify sources of vibration
- Time of events
- Determine frequencies and magnitudes
 - Electrical noise
 - Mechanical vibrations
 - Limit for acceptable vibrations
- Setup thresholds for recording

Summary

- Reason for equipment validation
 - Ensure performance
 - Ensure compatibility
 - Smoothen integration with instruments and the facility
 - System quality assurance
- Demonstration of an automatic test sequence and data analysis made at ESS.

EUROPEAN SPALLATION SOURCE

Thank you for your attention Questions?

Purpose

• What?

- Mechanical validation
 - Inspection of parts, FAT, CAT
 - Rotor balancing
 - Vacuum system validation
- Drive/Spindle validation
 - Inspection FAT, CAT
 - Functionality tests
- Control and Monitoring
 - Automatic test sequence,
 - Data analysis
 - Reporting

- Increases the efficiency of the validation process
- Removes external interference
- Determines system repeatability
- Monitoring system
 - A way to quickly commission and evaluate any chopper at ESS
 - More sensors and data will spawn new ideas of how to evaluate chopper systems
 - Need tight collaboration with chopper suppliers to improve data acquisition from chopper internal systems, data from magnetic bearings, etc.

Example case: Automatic test sequence

- Data could be transferred to EPICS
- Comparison to baseline system after installation

Time line

- Q4 2014, Concept evalutaion
- Q1 2015, Initial tests started
- Q2 2015, Equipment evaluation

