MAGiC

Instrument details and expected performances

<u>Outline</u>

- Instrument requirements
- Simulation hypothesis
- Instrument Walkthrough
- Expected performances
 - Raw performances
 - Simulated experiments
 - Gain factors

<u>Science case</u>

- Incommensurate magnetism
 - Chirality, multiferroicity, skyrmions
- Magneto-elasticity
- Frustrated magnets
- Superconductors
- 4f, 5f magnetism

- Thin films / nano materials
- Molecular magnets
- Local anisotropy
- Spin densities

Ordered magnets

- Spinels, perovskites, multiferroic, competing interactions
- Magnetic diversity
 - BiFeO₃: periodicity of 640 Å
 - RMnO3: periodicity of 6 Å

<u>Bragg regime</u>

Spinels, perovskites, multiferroic, competing
 interactions

[-11-1]

[111]

()

00

[11-1]

- Magnetic Cold neutrons + polarization
 - BiFeO₃: periodicity of 640 Å

• RMnO3: periodicity of 6 Å

<u>Bragg regime</u>

- Spinels, perovskites, multiferroic, competing interactions
- Magnetic Cold neutrons + polarization
 - BiFeO₃: periodicity of 640 Å
 - RMnO3: periodicity of 6 Å
- Multiple coupling (magneto-elastic, multiferroic)
- high resolution refinement

00

[111]

()

[-11-1]

[11-1]

<u>Bragg regime</u>

- Spinels, perovskites, multiferroic, competing interactions
 - Magnetic Cold neutrons + polarization
 - BiFeO₃: periodicity of 640 Å
 - RMnO3: periodicity of 6 Å
- Multiple coupling

 Multiple coupling
 (Ho)
 (magneto-elasti

 Thermal neutrons

 high resolution retinement
 aze (1)
 aze (1)
 (Ho)
 (Ho)

[-11-1]

150

200

[11-1]

[111]

()

50

100

Temperature (K)

00

Instrumental requirements

Thermal

Divergence: +-0.3° Wavelength: 0.7-2.4 Å Polarization: >99%

Cold

Divergence: +-0.5° Wavelength: 2.2-5.6 Å Polarization analysis

Sample size: - Thin films: 1 cm² - Bulk: < 1mm³ (down to 0.001 mm³) Lattice parameters: - Nuclear : 5-30 Å - Magnetic : 5-200 Å

<u>Outline</u>

- Instrument requirements
- Simulation hypothesis
- Instrument Walkthrough
- Expected performances
 - Raw performances
 - Simulated experiments
 - Gain factors

McStas 2.1

- Neutron optic
 - Swarm Particle Optimizer (iFit)
 - GuideBot (M. Bertelsen)
- ESS source model:
 - McStas component partially accounting for pancake geometry
 - Uniform spatial brilliance distribution
- Gravity !

<u>Message</u>

- Not the definitive design !
- Detailed design and optic dimensions:
 - Beamport
 - Space for guide outside the monolith
 - Moderator final design and brilliance
- Presented design is one of the working solutions
- No matter the ESS constraints an equally performing design will be find !

<u>Outline</u>

- Instrument requirements
- Simulation hypothesis
- Instrument Walkthrough
- Expected performances
 - Raw performances
 - Simulated experiments
 - Gain factors

Polarizing bender cold injection

max. vert. div. ~ (h+y-0.01)/(2*radius) * 180/ π ~ ±0.25 °

We need a feeder in the monolith to increase **cold and thermal** vertical divergence !

Vertical feeder for cold neutrons half-ellipse: from 2 to 6 m opening : 2.5 cm small-axis : 2.25 cm

Si solid state bender for cold neutron injection 200 channels, FeSi/Gd coated (reflec./abs. side) length~6 cm, curvature radius ~3 m total width : 3 cm total height : 4.5 cm

3 pulse shaping choppers

- 2@14Hz harmonics
- 1@14Hz
- 6.2 m from source
- 45 cm diameter

1st elliptical section: FeSi coated (left/right) and NiTi coated (top/bottom) Adaptive *m*-coating (1.5 < m < 5) length = 46 m small-axis = 4 cm

length=7.7 m *m*-coating = 4 (right), 2 (others) Polarization + no line of sight kink: 0.2°

Band selector chopper. 14 Hz 70 cm diameter

Proposed design Cold and therm. moderators 104 m elliptic guide 46 m elliptic guide 0 m

 2^{nd} elliptical section: FeSi coated (left/right) and NiTi coated (top/bottom) Adaptive *m*-coating (1.5<*m*<4) length = 104 m small-axis = 4 cm 2^{nd} kink: 0.2°

Proposed design Cold and therm. moderators 104 m elliptic guide 46 m elliptic guide 0 m 165 m Final section: - flipper

- slits
- Fermi choppers for inelastic option

<u>Cryogenics</u>

- Standard cryogenics
 - « orange » cryostat
 - furnaces
 - dilution fridge

From sample environment group !

- Dedicated magnets
 - superconducting 8T
 - pulsed 50T
 - corresponding inserts

On the beamline budget=dedicated

Superconducting He-free magnet

8T

300x60°aperture NbTi technology matches both detectors !

Superconducting He-free magnet

Pulsed field magnet

60x60°aperture conical design 40T @ ILL 140 ms pulse

Instrumental flexibility

- Fast thermal/cold switch
 - Solid state bender
 - Chopper frequencies and delays
- No magnets reorientation at switch
- Permanent polarization analysis

easy operation !

<u>Outline</u>

- Instrument requirements
- Simulation hypothesis
- Instrument Walkthrough
- Expected performances
 - Raw performances
 - Simulated experiments
 - Gain factors

Brilliance transfer and beam shape

- Brilliance transfer
- thermal > 90 %
- cold > 80 %

- Beam shape: homogeneous over 1 cm²
- Divergence: well transported

Longitudinal resolution

$$\frac{\Delta \lambda}{\lambda} = \frac{t_{pulse}}{t_{flight}}$$
$$= \frac{h t_{pulse}}{L_{inst} m_N \lambda}$$

Full pulse length (~3 ms) 0.7 Å: 9% 2.1 Å: 3% 3.8 Å: 1.7%

500 μs pulse length: 0.7 Å: 1.5% 2.1 Å: 0.5% 3.8 Å: 0.3%

Longitudinal resolution

Polarization

- •
- P > 80 %
- Polarizing super-mirrors Polarizing solid state bender
 - P > 98.5 %

<u>Outline</u>

- Instrument requirements
- Simulation hypothesis
- Instrument Walkthrough
- Expected performances
 - Raw performances
 - Simulated experiments
 - Gain factors

C60: parameters

Cold: $\lambda = 2.1-3.8 \text{ Å} / \pm 0.5^{\circ}$ Thermal: $\lambda = 0.7-2.4 \text{ Å} / \pm 0.3^{\circ}$ - 3 ms pulse length (cold stat/20) - 500 µs length (cold stat/100)

C₆₀:in plane

C60: out of plane

 $\underline{C_{60}}$

Thermal:

5x10⁴ cnts/s 60000 reflections / 15000 usable

Thermal: 5x10⁴ cnts/s 60000 reflections / 15000 usable Thermal high resolution: 1x10⁴ cnts/s 60000 reflections / 30000 usable

C₆₀: peak profiles

C₆₀ peak profiles

C60 peak profiles

C60 peak profiles

Capabilities

- Flexibility
 - Q-space/Flux/Resolution

Cold:Magnetic periodicity $\lambda = 3.8 - 5.5 \text{ Å} / \pm 0.3^{\circ}$ l = 640 Å500 µs length $k = 6.5 \times 10^{-3}$

Extreme case in terms of magnetic periodicity and (mag. per.)/(nuc. per.) ratio

Extreme case in terms of magnetic periodicity and (mag. per.)/(nuc. per.) ratio Satellites around anti-ferromagnetic position No nuclear Bragg pollution !

$$q_0 = (\frac{1}{2} - \frac{1}{2} \frac{1}{2})$$

Refined propagation vector: **k**=6.5x10⁻³

<u>Capabilities</u>

- Flexibility
 - Q-space/Flux/Resolution
- High resolution !

Cold: $\lambda = 2.1-3.8 \text{ Å} / \pm 0.5^{\circ}$ Thermal: $\lambda = 0.7-2.4 \text{ Å} / \pm 0.3^{\circ}$ - 2.86 ms pulse length (cold stat/20) - 200 µs length (cold stat/500)

Rare earth magnetism spin density 2x10⁵ counts/hour ! transition metals low spin (1/2)

<u>Capabilities</u>

- Flexibility
 - Q-space/Flux/Resolution
- High resolution !
- Efficient flipping ratio measurements + powder

Cold: $\lambda = 2.1 - 3.8 \text{ Å} / \pm 0.5^{\circ}$ Full pulse length Polarization analysis

<u>Capabilities</u>

- Flexibility
 - Q-space/Flux/Resolution
- High resolution !
- Efficient flipping ratio measurements + powder
- Excellent resolution in polarization analysis mode !

<u>Capabilities</u>

- Flexibility
 - Q-space/Flux/Resolution
- High resolution !
- Efficient flipping ratio measurements + powder
- Excellent resolution in polarization analysis mode !
- Polarized inelastic option => electro-magnons

<u>Outline</u>

- Instrument requirements
- Simulation hypothesis
- Instrument Walkthrough
- Expected performances
 - Raw performances
 - Simulated experiments
 - Gain factors

Expected gain factors

- **D7** (ILL):
 - Flux gain: ~200
 - Q-range in PA mode: 1.7
 - Divergence: ~10

Global: ~1000

- **SXD** (ISIS):
 - Flux gain: ~**100**
 - Polarization: ~3 (6 with analysis)

Global: ~300-600

Finally

- High performances fully polarized diffractometer
 - Large gain factor
 - High resolution
 - Excellent polarization
 - Flexible + easy to operate
- Well suited for the wide science case
- It's MAGiC

Useless m=0.7 2 A: incident angle > $0.14^\circ = = > \max \text{ pol.} \sim 70\%$

Reflections from Si shift the curves to the left 2 A: incident angle > $0 ==> \max \text{ pol.} \sim 99\%$