Unraveling water dynamics and restructuring upon α-synuclein fibril formation

P

00

Kevin Pounot

Introduction - protein conformation and stability

Cohen and Calkins, Nature (1959)

Astbury et al., The Biochemical Journal (1935)

Tuttle et al., Nature Structural & Molecular Biology (2016)

Tuttle et al., Nature Structural & Molecular Biology (2016)

Tuttle et al., Nature Structural & Molecular Biology (2016)

Tuttle et al., Nature Structural & Molecular Biology (2016)

Dementia Alzheimer's, Parkinson's

amyloid plaques

Dementia Alzheimer's, Parkinson's **Functional aggregation**

Cell

The RIP1/RIP3 Necrosome Forms a Functional Amyloid Signaling Complex Required for Programmed Necrosis

Jixi Li,^{1,6} Thomas McQuade,² Ansgar B. Siemer,^{3,7} Johanna Napetschnig,¹ Kenta Moriwaki,² Yu-Shan Hsiao,⁴ Ermelinda Damko,¹ David Moquin,² Thomas Walz,^{4,5} Ann McDermott,³ Francis Ka-Ming Chan,² and Hao Wu^{1,6,*}

REPORTS

Functional Amyloids As Natural Storage of Peptide Hormones in Pituitary Secretory Granules

Samir K. Maji,¹* Marilyn H. Perrin,² Michael R. Sawaya,³ Sebastian Jessberger,⁴ Krishna Vadodaria,⁴ Robert A. Rissman,⁵ Praful S. Singru,⁶ K. Peter R. Nilsson,⁷ Rozalyn Simon,⁷ David Schubert,⁸ David Eisenberg,³ Jean Rivier,² Paul Sawchenko,² Wylie Vale,² Roland Riek^{1,9}†

Dementia Alzheimer's, Parkinson's **Functional aggregation**

Biomaterials

drug delivery electronics scaffold, adhesive

• Fundamental understanding of protein amyloid aggregation process in the light of dynamics

• Fundamental understanding of protein amyloid aggregation process in the light of dynamics

- Fundamental understanding of protein amyloid aggregation process in the light of dynamics
- Include other proteins for comparative study and obtain atomistic details

Proteins studied during this work

 α -synuclein – Parkinson's disease

140 aa – intrinsically disordered protein

Protein and hydration water dynamics upon fibrillation

$$\left(\frac{d^2\sigma}{d\Omega dE'}\right) \propto \sigma_{inc} \sum_j \int \left\langle e^{-iq\cdot r_j(0)} e^{iq\cdot r_j(t)} \right\rangle e^{i\omega t} dt$$
 ~ 80 barns for hydrogen

 \sim 2 barns for deuterium

Yi et al., Journal of Physical Chemistry B (2012) Peters and Kneller. The Journal of Chemical Physics (2013)

Methods - all-atoms MD simulations

Methods - all-atoms MD simulations

Methods - all-atoms MD simulations

Access to the position of every atom in the system:

- number density
$$\rho_i(r) = \left\langle \frac{1}{N} \frac{1}{4\pi r^2 dr} [n_i(r+dr) - n_i(r)] \right\rangle$$

$$\begin{split} C_{ij}(t) &= \left\langle \frac{\sum_{i \neq j} h_{ij}(t) h_{ij}(0)}{\sum_{i \neq j} h_{ij}^2(0)} \right\rangle \\ h_{ij} &= \begin{cases} 1 \text{ if HB } (||X - H|| < 2.5 \text{\AA and } \widehat{XHX} > 130^\circ) \\ 0 \text{ otherwise} \end{cases} \end{split}$$

- hydrogen bond (HB) autocorrelation

- average distance between protein residues
$$\overline{d_{ij}} = \frac{1}{numFrames} \sum_{t_0}^{numFrames} \|r_i(t_0) - r_j(t_0)\|$$

Results

27

Lautenschläger et al., Nature Communications (2018)

Hydrated powders of α -synuclein

- 3 main regions:
 - N-ter lipid binding
 - cross- β core amyloid aggregation
 - C-ter calcium binding
- Initial structures available for monomers and fibrils
- Higher proportion of cross- β than tau

Protein dynamics unaffected

Mean-square displacement of water for α -syn (blue) and tau (green)

31

Neutron scattering \rightarrow ensemble-averaged dynamics

```
local dynamics \rightarrow simulations
```

Supervised by **Prof. Douglas Tobias** during 3 months stay at University of California, Irvine

Hydrated powder of α -synuclein monomers

Min-Kyu et al., Protein Science : A Publication of the Protein Society (2009)

100 ns equilibration, 20 ns run

Simulations validated against experimental data

Number density of water per residue

Water – protein hydrogen bonds autocorrelation

Amino acids distance map in α -synuclein monomers and fibrils

ARTICLE

Structural disorder of monomeric α -synuclein persists in mammalian cells

Francois-Xavier Theillet¹†*, Andres Binolfi¹†*, Beata Bekei¹*, Andrea Martorana², Honor May Rose¹, Marchel Stuiver¹, Silvia Verzini¹, Dorothea Lorenz³, Marleen van Rossum¹, Daniella Goldfarb² & Philipp Selenko¹

PLOS COMPUTATIONAL BIOLOGY

🔓 OPEN ACCESS 😥 PEER-REVIEWED

RESEARCH ARTICLE

Conformational ensemble of native α-synuclein in solution as determined by short-distance crosslinking constraintguided discrete molecular dynamics simulations

Nicholas I. Brodie 🚥, Konstantin I. Popov 🚥, Evgeniy V. Petrotchenko, Nikolay V. Dokholyan 🖾, Christoph H. Borchers 🖾

Structure

Volume 27, Issue 11, 5 November 2019, Pages 1710-1715.e4

Article

doi:10.1038/nature16531

Insight into the Structure of the "Unstructured" Tau Protein

Konstantin I. Popov ^{1, 7}, Karl A.T. Makepeace ^{2, 7}, Evgeniy V. Petrotchenko ³, Nikolay V. Dokholyan ⁴ $\stackrel{\wedge}{\sim}$ \boxtimes , Christoph H. Borchers ^{2, 3, 5, 6, 8} $\stackrel{\otimes}{\sim}$ \boxtimes

increased water dynamics and entropy around N-ter and C-ter

cross-β

42 % α-synuclein

Conclusion and outlook

hydration water metal ions time-resolved studies

DYNAMOP Group Martin Weik Giorgio Schiro Ninon Zala

EM platform Daphna Fenel Guy Schoen

M4D platform Jean-Philippe Kleman **IN16B** Tilo Seydel

D-Lab Martine Moulin Trevor Forsyth Michael Haertlein

SPHERES Michaela Zamponi Daria Noferini

Douglas Tobias