

"Using molecular modeling and neutron scattering experiments to investigate PNIPAM microgels"

Letizia Tavagnacco

ESS/ILL User Meeting - Topical session on Atomic Scale Simulations in Neutron Scattering

PNIPAM microgels

Microgels are colloidal-scale particles with an intramolecular cross-linked polymeric network

 PNIPAM microgels are co-polymers of NIPAM (N-isopropylacrylamide) and BIS (bis-acrylamide)

✤ PNIPAM microgels share many features with proteins

PNIPAM has a Volume Phase Transition in response to external stimuli at T_{VPT} ~32°C

Cross-linker

NIPAM

Repeating unit

BIS

PNIPAM microgels are widely investigated around T_{VPT} because the tunability of chemical physical properties gives rise to a variety of applications

Protein dynamical transition

✓ It was first observed in 1989 for myoglobin. It takes place in hydrated protein suspensions at low temperature, typically ~220-240 K.

W. Doster et al. Nature 1989, 337, 754

It consists of a steep enhancement of the atomic mobility which has been associated to the activation of biological functionality.

K. A. Henzler-Wildman et al. Nature 2007, 450, 913

 It has been connected to a strong to strong crossover of the protein hydration water dynamics.
G. Camisasca et al. J. Chem. Phys. 2016, 145, 044503

MSDs of the intrinsically disordered protein tau in a hydrated and dry state, measured by elastic incoherent neutron scattering.

G. Schirò, Nature Comm. 2015, 6, 6490

Neutron scattering experiments

<u>ILL (Grenoble) IN13 spectrometer</u> Probing motions faster than ~150 ps in a spatial region between 1 - 20 Å

M. Zanatta et al. Sci. Adv. 2018, 4 : eaat5895

300

275

Microgel in silico model

 \leftarrow 5 nm \rightarrow

Tip4p/ICE

Cross-linked atactic PNIPAM 30-mers chains

6 crosslinks and 3D percolation through infinite connectivity

NIPAM/BIS ratio representing a core region

Quantitative agreement between MD simulations and EINS experiments!

Microscopic origin

is this transition related to a structural rearrangement?

PNIPAM 30% PNIPAM 40% PNIPAM 60%

Temperature dependence of PNIPAM radius of gyration

Distribution of backbone dihedral angles

No discontinuity is observed at ~250 K

PNIPAM dynamics

Backbone

Fraction of mobile dihedrals

MSD at 150 ps of backbone carbon atoms $C\alpha$ (Dots are cross-linker atoms)

PNIPAM and water dynamics

Coupling between water and polymer dynamics

Arrhenius plot of the long relaxation time of the self intermediate scattering function calculated for PNIPAM hydrogen atoms (τ_P) and water diffusion coefficient (D_w) 8

Macromolecule-water coupling

- *№* we monitor the lifetime of PNIPAM-water τ_{PW} and water-water τ_{WW} hydrogen bonds
- $\boldsymbol{\not\sim} \tau_{\mathsf{PW}}$ is considerably longer than τ_{WW}
- r_{PW} and $τ_{WW}$ follow an Arrhenius behavior with activation energies of about 55 kJ mol⁻¹ irrespective of hydration level

Molecular mechanism

Water dynamics PNIPAM-water HBs $E_a = ~55 \text{ kJ mol}^{-1}$

3.6

3.8

1000 / Temperature (K)

3.4

~250 K

4.0

 $\ln(\tau_{PW})$

L. Tavagnacco et al. J. Phys. Chem. Lett. 2019, 10, 4, 870-876

Role of the architecture

ILL (Grenoble) IN13 spectrometer

IN13 integrated elastic intensity as a function of temperature for:

- (a) linear polymer chains as a function of PNIPAM concentration
- (b) linear chains (open symbols) compared to microgels (filled symbols)

L. Tavagnacco et al. Phys. Rev. Res. 2021 in press

PNIPAM linear chains

ILL (Grenoble) IN13, IN16B and IN5 spectrometers

Comparison between experimental MSDs (filled symbols) and numerical MSDs (open symbols) at different timescales

Summary

- Evidence of a "protein-like" dynamical transition in non-biological macromolecules, independently on the polymer topology
- At T<T_d PNIPAM dynamics is governed by the rotation of the methyl groups and a sudden increase of the polymer segmental dynamics occurs at T_d
- Hydrogen bonds between PNIPAM and water play a primary role in determining water dynamics below T_d
- Macromolecule-water coupling is a driving ingredient of the dynamical transition

Andrea Orecchini University of Perugia and CNR-IOM Marco Zanatta University of Trento Benedetta Rosi

University of Perugia

Monica Bertoldo

Elena Buratti

CNR-ISC Rome

University of Ferrara and CNR-ISOF

European Research Council

nank you!

Francesca Natali CNR-IOM, Institut Laue Langevin Bernhard Frick Institut Laue Langevin Jacques Ollivier Institut Laue Langevin

Emanuela Zaccarelli CNR-ISC Rome Ester Chiessi University of Rome Tor Vergata