

Lattice dynamics and thermal conductivity in complex metallic alloys

Pierre-François Lory

Presentation is based on my PhD work at Institute Laue-Langevin and SIMAP

Grenoble, FRANCE

Thermal conductivity (1 W/m.K) ↔ Clathrates & Quasicrystals

- Effect of structural complexity and dynamics (phonons) on thermal properties
- Various ways of reducing K_{ph}: complexity, disorder, clusters/cages,...

Toberer, E. S., Zevalkink, A., & Snyder, G. J. (2011). Phonon engineering through crystal chemistry. *Journal of Materials Chemistry*, 21(40), 15843-15852.

Outline

1) Introduction

- 1.1) Lattice dynamic and thermal conductivity
- 1.2) Phonon lifetime
- 1.3) Inelastic Neutrons Scattering
- 1.4) Simulations methods
- 1.5) DFT Pair potentials
- 2) Approximant o-Al₁₃Co₄
 - 3.1) Structure (complexity)3.2) Lattice dynamics (phonons propagations)3.3) Thermal conductivity (Simulation)
- 3) Conclusion & perspectives

1) Introduction

- 1.1) Lattice dynamic (Phonons) and thermal conductivity
- 1.2) Phonon lifetime
- 1.3) Inelastic Neutrons Scattering
- 1.4) Simulations methods
- 1.5) DFT Pair potentials

1.1) Lattice dynamic (Phonons) and thermal conductivity

• Phonon or lattice *wave:*

Lattice thermal conductivity (κ^I_{ph}) depends on:
 a) DISPERSION relation : V_{ph}(ω)
 b) LIFETIMES of modes : τ(ω)

$$l_{ph}(\omega) = v_{ph}(\omega) \tau_{ph}(\omega)$$

 $\nabla T > 0$

$$\kappa_{ph}^{l} = \frac{1}{3} \int C_{V}(\omega) v_{ph}^{2}(\omega) \tau_{ph}(\omega) n(\omega) d\omega$$

1.2) Phonon lifetime

Structure (complexity, disorder) \rightarrow limits thermal conductivity

Mechanism 1: disorder/impurity

T independent

Mechanism 2: 3 phonons

- Due to anharmonicity
- T dependent, $\kappa_{ph} \sim 1/T$

(b) Phonon-Impurity (B) Scattering

1.3) Inelastic Neutron Scattering

- Width $\Gamma \rightarrow$ Phonon lifetime τ
- E(q): dispersion $\rightarrow V_{ph}$

$$\tau(\omega) = \frac{2\hbar}{\Gamma(E)_{FWHM}}$$

1.4) Simulations - methods

Goal : Calculate Phonon and Thermal conductivity

- 1) Normal modes Harmonic approximation
- 2) Molecular Dynamics includes Anharmonic terms

	Normal modes	Molecular Dynamic (MD)	
b-initio Cienna Ciencia Cienci	T = 0 K (optimized structure)	80 K < T	Molecular Dynamics Simulator
	Normal modes / phonons	Trajectories of atoms	
	Supercell (~10 Å) or < 800 atoms	Superbox (~10 Å to few nm) or 10 ⁶ atoms	
	Quantum effects	Classic approximation	
	Calcul S(Q,ω) ∀ q point	Calcul S(Q,ω) ∀ q point commensurate with the superbox	

1.5) DFT and Pair potentials

- DFT N_{atoms} < 800
- Pair Potentials : to describe interactions of the AI-TM
- "Force Matching" method from M. Mihalkovic and al.[2]

[2] M. Mihalkovic & C. L. Henley, Phys. Rev. B. 85, 9, 092-102, (2012)

$V(r) = \frac{C_1}{r^{\eta_1}} + \frac{C_2}{r^{\eta_2}} \cos(k_* r + \phi_*)$

Approximant-crystal o-Al₁₃Co₄

2.1) Structure of approximant o-Al₁₃Co₄
2.2) Lattice Dynamics
(experiment and simulation)
2.3) Thermal conductivity model

2.1) Structural models for $o-Al_{13}Co_4$

- Local structure: cluster (4.6 Å)
- [100] periodic and [010] and [001], pseudo-quasiperiodic
- Unit cell: orthorhombic (a = 8.15 Å, b = 12.34 Å, c = 14.45 Å)

2.1) Numerical model with disorder (J. Grin 2015)

- Model 1: SC(1×1×1): 102 atoms ORDERED MODEL [1994]
- Model 2, 1 atom/site : SC(3×2×2): 1205 atoms or 100 atoms unit cell ATOMIC DISORDER [2015]

Approximant-crystal o-Al₁₃Co₄

2.1) Structure of approximant o-Al₁₃Co₄
2.2) Lattice Dynamics (experiment and simulation) Method 1 : Harmonic approximation Method 2 : Classical MD

2.3) Thermal conductivity model

2.2) INS and harmonic simulation (Method 1)

Experiment (INS, dots) Harmonic simulation (red lines) SIMULATION & RESOLUTION

GOOD AGREEMENT experiment-simulation

2.2) Low symmetry (400)-(206)

Lattice dynamics: Experiment and Molecular dynamics simulations (LAMMPS + data analysis with nMoldyn

2.2) INS and MD Simulations

- MD simulation reproduce very well the phonon dispersion mapping (high symmetric direction)
- MD mapping has been convoluted by the instrumental resolution (Gaussian function)

2.2) Experiments vs temperature

S(Q,w) from MD simulations, where we observe the DHO signature from INS

- Measure in large range of temperatures [10 K to 550 K], (TAS-IN22 + cryofurnace)
- Conclusion : Γ is not dependent on the temperature

2.2) MD Simulations vs temperature

MD of S(Q,\omega) low symmetry : q = 0.34 Å⁻¹ (measured DHO)

Model 1: ordered

Model 2: disordered

- Effect of T more important in model 1
- Weak temperature dependence

- MD with Anharmonic terms using pair potentials
- Phonon with finite lifetime → Model 2 with atomic disorder

 $S(Q,\omega)$ low symmetry: $q = 0.34 \text{ Å}^{-1}$

2.2) MD Simulations S(Q,t) vs temperature

Approximant-crystal o-Al₁₃Co₄

2.1) Structure of approximant o-Al₁₃Co₄
2.2) Lattice Dynamics (experiments and simulations)

2.3) Thermal conductivity simulation

3.3) Method of prediction of thermal conductivity MD-GK

3.3) Thermal conductivity MD-GK in o-Al₁₃Co₄

- For K_{total,ph}, simulations coherent with experiment
- Weak temperature dependence (disorder model)

Measure: J. Dolinšek, M. Komelj, P. Jeglič, S. Vrtnik, D. Stanić, P. Popčević, J. Ivkov, A. Smontara, Z. Jagličić, P. Gille, Yu. Grin, *Phys. Rev. B*, **79**, 184-201, (2009)

Structure \rightarrow Lattice Dynamics \rightarrow Thermal conductivity

For approximant-crystal o-Al₁₃Co₄

- Finite phonon lifetime due to disorder
- Phonon lifetime for acoustic mode : 33 ps
- Mean free path $\sim 25 \text{ nm} \gg a = 10.8 \text{ Å}$
- Cluster structure and atomic disorder \rightarrow low and weak Tdependence of thermal conductivity in o-Al₁₃Co₄

Perspective : Investigate the thermal properties on the Clathrate $Ba_8Ge_{40.6}Au_{5.25}$ by Classical simulation and potentials

P.-F. Lory, V. M. Giordano, P. Gille, H. Euchner, M. Mihalkovič, E. Pellegrini, M. Gonzalez, L.-P. Regnault, P. Bastie, H. Schober, S. Pailhes, M. R. Johnson, Yu. Grin, and M. de Boissieu, Phys. Rev. B **102**, 024303, (2020)

Perspective

Ba₈Ge₄₀Au₆

Ba₈Ge_{40.3}Au_{5.25}

- Investigate the thermal properties on the clathrate series by Classical molecular simulation
- Compare with the experimental work (Measure $\tau_{ph} \sim [30-53] \mbox{ ps})$

Lory, P. F., Pailhès, S., Giordano, V. M., Euchner, H. Alguyen, H. D., Ramlau, R., ... & de Boissieu, M. (2017). Direct measurement of individual phonon lifetimes in the clathrate compound Ba 7.81 Ge 40.67 Au 5.33. *Nature communications*, *8*(1), 1-10.

Acknowledgments

Marc de Boissieu

Stéphane Pailhès Valentina Giordano

Peter Gille Brigitta Bauer

Mark R. Johnson Eric Pellegrini Miguel Angel Gonzalez Emmanuel Farhi Didier Richard Helmut Schober Jiri Kulda Pierre Bastie Louis Pierre Regnault Jacques Olivier

Alexei Bossak Michael Krisch

Céline Allio Elizaveta Evteeva Cornelius Krellner

Silke Paschen Petr Tomes

MAX-PLANCK-INSTITUT

Juri Grin

Michael Baitinger

Hong Duong Nguyen

Thank you for your attention