## THE STRUCTURE OF WATER IN CALCIUM-SILICATE-HYDRATES STUDIED BY NEUTRON DIFFRACTION WITH ISOTOPIC SUBSTITUTION

PhD student: Zhanar Zhakiyeva

Supervisors: Alejandro Fernández-Martínez & Alexander Van Driessche

- ILL Supervisor: Gabriel Cuello
- BRGM Supervisor: Francis Claret
- Princeton University collaborator: Ian Bourg
- **ILL collaborator:** Henry Fischer



#### **MOST CONSUMED SUBSTANCES IN THE WORLD**



### CALCIUM SILICATE HYDRATES (C-S-H)



- 1° strength-giving phase
- Nanocrystalline, disordered
- Ca/Si=0.7-1.5 synthetic CSH
- Ca/Si=1.6-2 cement paste

mesoscale view of C-S-H

atomic structure of tobermorite mineral

Modified from Richardson (2008); Roosz et al. (2017)

#### WHY STUDY WATER?

#### structure of water in C-S-H is still unresolved!



4

# CALCIUM-SILICATE-HYDRATE NANOPARTICLE Ca/Si=1 55% R.H.



#### **CALCIUM-SILICATE-HYDRATE NANOPARTICLE** Ca/Si=1 55% R.H.



#### **NEUTRON DIFFRACTION WITH ISOTOPIC SUBSTITUTION WHY NEUTRONS?**

FOR SOCIET

Information about local ordering of water



#### MD MODEL VALIDATION – EXPERIMENTAL S(Q) VS CALCULATED

MD model is validated by structure factors



#### MD MODEL VALIDATION – EXPERIMENTAL TOTAL G(R) VS CALCULATED

MD model is validated by total pdf



#### MD MODEL VALIDATION – EXPERIMENTAL FIRST DIFFERENCE G(R) VS CALCULATED

MD model is validated by partial pdf



#### **CROSS SECTION OF C-S-H 55% R.H.**



#### **CONCLUSION - WATER BONDING** Type I water – coordinated to Ca ions ~61%





## **Type I water** donates H-bond equally to the surface >Si-O<sup>-</sup> and to other H<sub>2</sub>O

basal plane

#### **CONCLUSION - WATER BONDING** Type I water – coordinated to Ca ions ~61%

Type II water – not coordinated to Ca ions ~39%





**Type I water** donates H-bond equally to the surface  $>Si-O^-$  and to other H<sub>2</sub>O **Type II water** donates  $\sim 3^*$  more to the surface  $>Si-O^-$  than to other H<sub>2</sub>O to anchor itself on the surface

#### **CONCLUSION - WATER BONDING** Type I water – coordinated to Ca ions ~61%

Type II water – not coordinated to Ca ions ~39%





**Type I water** donates H-bond equally to the surface  $>Si-O^-$  and to other H<sub>2</sub>O **Type II water** donates  $\sim 3^*$  more to the surface  $>Si-O^-$  than to other H<sub>2</sub>O to anchor itself on the surface The **wet areas** of the surface are around Ca ions

The **dry areas** are around the surface >Si-OH

basal plane

#### **THANK YOU FOR YOUR ATTENTION!**

#### Acknowledgements:

Supervisors: Alejandro Fernández-Martínez and Alexander Van Driessche ILL Supervisor: Gabriel Cuello BRGM Supervisor: Francis Claret BRGM collaborators: Sylvain Grangeon,Stephane Gaboreau Princeton University collaborator: Ian Bourg ILL collaborator: Henry Fischer ISTerre Engineers: Sylvain Campillo,Sarah Bureau,Nathaniel Findling, Valérie Magnin,Delphine Tisseraud



VSRC Princeton University scholarship IDEX mobility scholarship from UGA

