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Fig. 2. Molecule transport through 
graphitic carbon nitride GCN. Intercalated 
anions used to control the interlayer 
spacing.

Nat Commun 10, 2500 (2019). https://doi.org/10.1038/s41467-019-
10381-z

Promising carbon based materials for synthetic membrane applications

Fig. 1. Water transport in carbon 
nanotube CNT (a), (b) and through 
the nano-channels of graphene 
oxide GO (c), (d)

Chemical science, 8(3), pp.1701-1704. DOI: 
10.1039/C6SC03909J 

• Water transport along the graphitic planes

Fig. 3. Rapid water transport within lipid embedded 
CNTs analogous to directional water transport  
through AQP channels in cellular biomembranes

Science  25 Aug 2017: Vol. 357, Issue 6353, pp. 753 DOI: 10.1126/science.aao2440
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• Water transport through the embedded 
channels
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Nanoporous structure of the crystalline layered carbon nitride

Fig. 4. Connectivity within a single PTI nanosheet. RIGHT: 
HRTEM image of single PTI sheet. DOI: 10.1126/sciadv.aay9851
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Fig. 5. TGA of PTI.H2O shows initial mass loss ~9 weight % 
during heating corresponding to 1 H2O molecule in each void.
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Quasi Electron Neutron Scattering analysis of H2O dynamics

Fig. 6. QENS data for PTI before (IF-PTI) and after exposure to air (PTI.H2O). 
Lorentzian broadening observed only for hydrated material.
Global fit, Data points, Localised relaxations, C-o-m translational diffusion, 
Background 4

• No Lorentzian broadening in dried (IF-PTI) 
sample

• N-H fs vibrational excitations below observed 
time scale 

• Broadening in hydrated PTI (PTI.H2O) at all 
probed time scales (ps-ns range)

• QENS profiles fitted with two Lorentzians

• Two types of water motion in PTI.H2O
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Quasi Electron Neutron Scattering analysis of H2O dynamics

Fig. 7. Analysis of half-width at half-maximum (HWHM, Γ) vs momentum transfer, Q

Fig. 8. Water dynamics in PTI.H2O vs mobility in other nanoconfined environments (aquaporin AQP and carbon nanotubes CNT).  
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Narrow 
Lorentzian 
Component

Broader 
Lorentzian
Component

o c -o-m diffusional displacement > 255 K
o Q-independent region at low Q dependant on T
o Nanoconfined H2O dynamics at Q-independent region

• Q-independent Γ region at all Q
• Nanoconfined H2O dynamics (spatially separated molecules 

constrained by H-bonding with local environment)
• Nanoconfined radius ~0.5 nm

Membrane performance

• Translational Dt H2O dynamics faster than transport within AQP channels
• Relaxation times from Q-independent broad component comparable 

with H2O contained within CNTs
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Density Functional Theory calculations

Experimental analysis        → Initial structure guess      → Geometry optimisation    → Equilibrium geometry 

~9w% loss during heating 1 H2O molecule                                    DFT                                           Figure 9

in TGA per 1 nanopore

Fig. 9. Equilibrium location of H2O molecule inside the intralayer pores. 
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• Equilibrium H2O position with O atom slightly above/below the PTI sheet

• One O-H bond nearly withing the PTI sheet, other perpendicular to the plane

• Geometry optimisation of dissociated H2O returns neutral molecule

• Equilibrium H2O position facilitated by OH···N and NH···O interactions with –N= 

and –NH- groups decorating the interior of the C12N12H3 rings.
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Density Functional Theory calculations

Fig.12. Experimental vs calculated XRD for IF-PTI and PTI.H2O.

Nearly isoenergetic structural variants (δE = 1-7 meV per C2N3H formula unit)

Precise description of the interlayer forces
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Fig.11. Error in the calc. lattice parameters vs level of dispersion 

description (no description/ disp. correction up to 2-body term/ disp. 

correction up to 3-body term + removal of artificial overbinding)

Resolving the layer stacking in PTI

• Structure with superimposed intralayer pores is maintained

• Channels available for water diffusion
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Ab Initio Molecular Modelling + series of constrained geometry optimisations (DFT)

Fig. 13. AIMD simulations at different T values.
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Fig. 13. Constrained geometry optimisations (DFT)

• Two energy barriers for translational diffusion (0.16, 0.3 eV)
• Sequential reversal in molecular orientation of H2O
• AIMD confirms two types of water dynamics (Dloc at 150, 240K

and Dt at 373 K)
• Dt over length scale up to 40 A

Fig. 14 Directed water transport in PTI vs in AQP channels
DOI:HTTPS://DOI.ORG/10.1016/S0968-0004(00)01778-3
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QENS DFT AIMD

• Evidence for locally 

nanoconfined motions

ΓR(Q2

) 

• Values for localized mobility D
loc

• Evidence for c-o-m diffusion 

displacement of H
2

O molecules           

ΓT(Q2

) 

• Estimate for translational 

diffusion coefficient D
t

• Estimate of Debye-Waller 

radius and its relation to 

temperature

• Temperature threshold for 

longer-range diffusional 

dynamics

• Equilibrium geometry of IF-PTI 

and PTI.H
2

O

• Direction of H
2

O diffusional 

displacement within PTI

• Energetics of water transport

• Evidence for H
2

O reorientations 

during the transport

• Evidence for locally 

nanoconfined motions

• Evidence for c-o-m diffusion 

displacement of H
2

O molecules 

• Estimate of Debye-Waller 

radius and its relation to 

temperature

• Temperature threshold for 

longer-range diffusional 

dynamics
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Thank you for listening!

Foglia F. et al., “Aquaporin-like water transport in nanoporous crystalline layered carbon nitride” 
Sci. Adv., 2020, 6, 39.

https://advances.sciencemag.org/content/6/39/eabb6011
https://advances.sciencemag.org/content/6/39/eabb6011

