LiquidLib: An MPI/OpenMP Parallelized Toolbox for Analyzing Molecular Dynamics Simulations with Applications to Neutron Scattering Experiments

http://z-laboratory.github.io/LiquidLib/

Yanqin Zhai (Advisor: YZ)

Department of Nuclear, Plasma, and Radiological Engineering Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign

Neutron scattering measures the variation/fluctuation in space and time.

double differential cross section

$$\frac{d^2\sigma}{d\Omega dE} = \frac{k_f}{k_i} \frac{1}{2\pi\hbar} \sum_{l,l'} \overline{b_l b_{l'}} \int \left\langle e^{-i\mathbf{k}\cdot[\mathbf{r}_l(t) - \mathbf{r}_l(0)]} \right\rangle e^{-i\omega t} \mathrm{d}t$$

bound scattering length
$$\overline{b_l b_{l'}} = \overline{b}^2 + \delta_{ll'} (\overline{b^2} - \overline{b}^2) = b_{\rm coh}^2 + \delta_{ll'} b_{\rm inc}^2$$

$$\begin{aligned} \frac{d^2\sigma}{d\Omega dE} &= \frac{k_f}{k_i} \frac{1}{2\pi\hbar} \left[b_{\rm coh}^2 \sum_{l,l'} \int \left\langle e^{-i\mathbf{k}\cdot[\mathbf{r}_l(t) - \mathbf{r}_l(0)]} \right\rangle e^{-i\omega t} \mathrm{d}t + b_{\rm inc}^2 \sum_l \int \left\langle e^{-i\mathbf{k}\cdot[\mathbf{r}_l(t) - \mathbf{r}_{l'}(0)]} \right\rangle e^{-i\omega t} \mathrm{d}t \right] \\ &= \frac{k_f}{k_i} \frac{1}{\hbar} \left[b_{\rm coh}^2 S(k, E) + b_{\rm inc}^2 S_s(k, E) \right] \end{aligned}$$

collective/coherent dynamic structure factor $S(k, E) = \frac{1}{2\pi} \int F(k, t) e^{-i\omega t} dt$

collective/coherentintermediate scattering function

$$t) = \sum_{l,l'} \left\langle e^{-i\mathbf{k} \cdot [\mathbf{r}_l(t) - \mathbf{r}_{l'}(0)]} \right\rangle$$

self/incoherent dynamic $S_s(k, E) = \frac{1}{2\pi} \int F_s(k, t) e^{-i\omega t} dt$ structure factor

self/incoherent intermediate scattering function

$$F_s(k,t) = \sum_l \left\langle e^{-i\mathbf{k} \cdot [\mathbf{r}_l(t) - \mathbf{r}_l(0)]} \right\rangle$$

• Neutron scattering measures the variation/fluctuation in space and time, which is described by spatial-dependent density correlation functions.

I ILLINOIS

 $\rho(\mathbf{k},t) = \sum_{l} e^{-i\mathbf{k}\cdot\mathbf{r}_{l}(0)}$

Molecular Dynamics (MD) Simulations

Potential & Force field

ILLINOIS

Time and Length Scales Probed by Molecular Dynamics and Neutron Scattering

	Molecular Dynamics	Neutron Scattering
Length Scale	Å – µm	$10^{-4} - 50 \text{ Å}^{-1}$
Time Scale	fs — µs	sub µeV – eV

A perfect match!

LiquidLib

N. Walter, A. Jaiswal, Z. Cai, Y Z, Comput. Phys. Commun. 228 (2018) 209-218

Quantities supported out of the box

- Pair Distribution Function
- Weighted and Unweighted Structure Factor
- Mean Squared Displacement
- Non-Gaussian Parameter
- Four-point Correlation Function
- Velocity Auto Correlation Function
- Self van Hove Correlation Function
- Collective van Hove Correlation Function
- Self Intermediate Scattering Function
- Collective Intermediate Scattering Function
- Bond Orientational Order Parameter
- Current Correlation Function
- Electric Current Correlation Function
- Trajectory Type Converter
- Molecular Calculations

And many more to come...

Static Structure Quantities

Diffusive Quantities

Diffusion Coefficient Computed as

$$\lim_{t \to \infty} \langle r^2(t) \rangle = 2dDt \qquad \qquad D = \frac{1}{3} \int_0^\infty C_{vv}(t)dt$$

ILLINOIS

Dynamic Heterogeneity Quantities

I ILLINOIS

Scattering Quantities

Self Intermediate Scattering Function

Self van Hove Correlation Function

Collective Intermediate Scattering Function

Collective van Hove Correlation Function

Performance with Parallelization

Computations can take hours and longer depending on the quantity and size of simulation

Collective correlation quantities have a complexity $O(N^2)$ Self correlation quantities have a complexity O(N)

In serial, LiquidLib is at least 4 times faster than comparable packages

Added options to compensate for memory limited computations at the cost of speed.

MPI/OpenMP parallelization.

MPI Parallelization Scaling Factor

export OMP_NUM_THREADS=16 && mpiexec -n 4 --map-by node computeMeanSquareDisplacement -i r2_t.in

World LiquidLib Users

Key Features of LiquidLib

- A single, high performance, and extendable package to compute statistical quantities from classical and *ab initio* molecular dynamics (MD) trajectories
- Written in C++, highly extendable, new quantities can be added easily
- Support MPI/OpenMP parallelization
- Support for CUDA & HIP is on the way
- Support N-dimensional calculations
- Allows for species selection for partial quantity computation
- All quantities can be weighted by the neutron scattering lengths to allow for direct comparison to neutron scattering data
- Emphasis on quantities relevant to liquids and liquid-like matter
- Both GUI and CLI support

Developers of LiquidLib

Nathan Walter

Zhikun Cai Abh

Abhishek Jaiswal

Previous Developers

http://z-laboratory.github.io/LiquidLib/

Yanqin Zhai

Zhixia Li

Prof. Y Z

Hossam Farag

Farag Shao-Chun Lee

Current Developers

This work is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Award Number DE-SC0014084.

http://z-laboratory.github.io/LiquidLib/