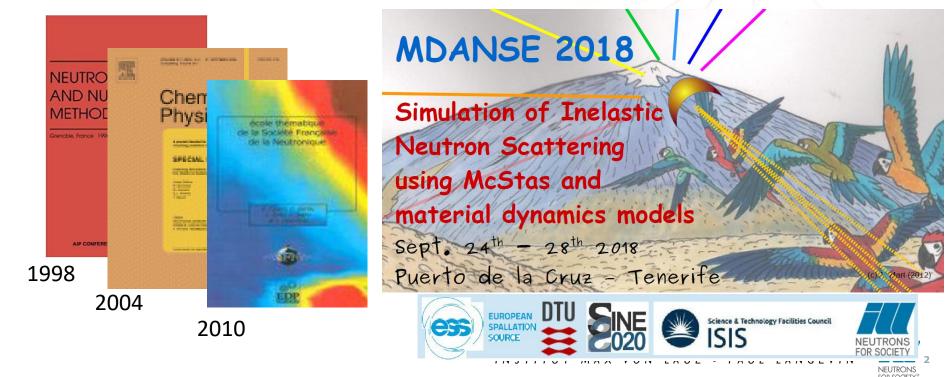
ESS/ILL User Meeting. Topical session on:

Atomic-scale simulations in neutron scattering


Neutrons for Europe
USER MEETING
2020

INSTITUT MAX VON LAUE - PAUL LANGEVIN

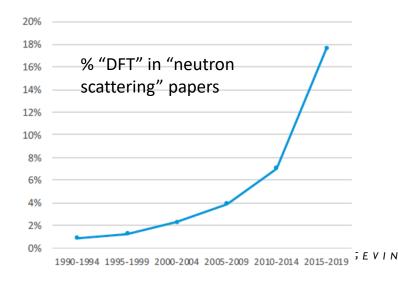
A quick look to the past (from an ILL perspective)

Around 1995, a small pioneering group formed around Don Kearley and Mark Johnson. Goal: Foster and facilitate use of numerical simulations to complement neutron experiments.

The present

Journal of Physics Communications

iopscience.org/jpco



Focus Issue on Computers in Neutron Science (ISIS/ORNL editors, 2020)

Atomistic Modeling on Neutron Scattering

7-9 June 2017 Spallation Neutron Source

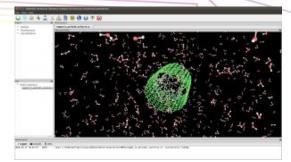
The present: General tools

We ("neutron users") benefit from:

- Hardware advances (more affordable computing power).
- Methods and software developed by specialized groups and made accessible to non specialists.
- And during this workshop we heard of:
 - New approaches to extend DFT to large systems of biological interest (Luigi Genovese and Viviana Cristiglio, Octav Caldararu).
 - And multiple examples of techniques (DFT, classical MD, coarse-grained, ensemble optimization, ...) and available software (Gromacs, Lammps, NAMD, Vasp, Castep, ...) providing us with efficient tools to study very different types of scientific problems.

The present: Specific tools

Less likely to find outside the software needed to calculate neutron observables.


*n*MOLDYN: A program package for a neutron scattering oriented analysis of Molecular Dynamics simulations

Gerald R. Kneller^{a,b,1}, Volker Keiner^{c,2}, Meinhard Kneller^{c,3}, Matthias Schiller^{c,4}

^a IBM France, 68-76 Quai de la Rapée, F-75012 Paris, France ^b DBCM SBPM, CEA, CE Saclay, F-91191 Gif-sur-Yvette, France ^c Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany

Comp. Phys. Comm. (1995)

 $\mathsf{MDANSE:}~\mathsf{U}.~\mathsf{Orleans} \to \mathsf{ILL} \to \mathsf{ISIS}$

And here we learned about:

- MD2reflect (Nebojsa Zec)
- LiquidLib (Yanqin Zhai)
- "Private" analysis scripts/programs: Could they be useful to other neutron researchers?

The present: Applications

We have seen examples of applications in many different domains:

- Biology, with references to health issues (coronavirus, Alzheimer, Parkinson, Huntington, ...)
- Materials: Energy materials (e.g. ILs and DES for battery electrolytes, ion conductors, thermoelectrics, ...), nanotubes and nanopores, etc.
- Polymers and soft-matter
- Magnetism
- Fundamental science

And combined with most of the available neutron techniques:

- Neutron diffraction, small angle scattering, reflectivity
- Quasielastic and inelastic scattering

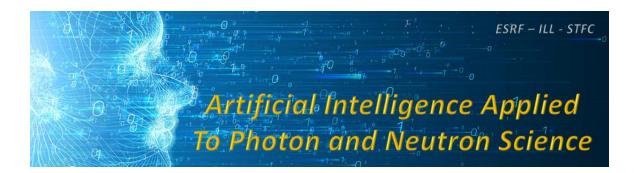
BROAD SCOPE (both of neutrons and simulations)

The present: Initiatives

Close collaboration between the scientific groups of the European neutron facilities:

- SINE 2020 WP 10 (reduction and data analysis software, including simulations as a kind of advanced data treatment)
- PaNOSC ViNYL (virtual experiments, including input from simulations)
- MDANSE school
- LENS (League of advanced European Neutron Sources):
 - $_{\circ}$ WG4: Computing, Data \rightarrow subgroup on computer simulations (Sanghamitra Mukhopadhyay, ISIS)

ANY FEEDBACK, SUGGESTION, CONTRIBUTION IS HIGHLY APPRECIATED



 We had mainly young speakers (~50% PhD students) and the quality of the work and the presentations was really high.

KEEP DOING SUCH GOOD WORK AND I HOPE THAT MANY AMONG YOU WILL PURSUE A SCIENTIFIC CAREER AND FORM THE NEXT GENERATION OF NEUTRON SCATTERERS!

- We had mainly young speakers (~50% PhD students) and the quality of the work and the presentations was really high.
- New developments and methods continue to be developed, e.g. AI, ML, quantum comp, ...

Workshop on Perspectives and Applications of Deep Learning for Accelerated Scientific Discovery at next generation X-ray and Neutron Sources

26-27 September 2019 August Krogh Building Europe/Copenhagen timezone

- We had mainly young speakers (~50% PhD students) and the quality of the work and the presentations was really high.
- New developments and methods continue to be developed, e.g. AI, ML, quantum comp, ...
- ESS will soon be a reality

First users in 2023!

- We had mainly young speakers (~50% PhD students) and the quality of the work and the presentations was really high.
- New developments and methods continue to be developed, e.g. AI, ML, quantum comp, ...
- ESS will soon be a reality
- And ILL remains in good shape

ENDURANCE PHASE 2: 2019

Endurance-2 projects were initiated with an open call at the start of 2017 and approximately 40 were received for a total budget of 60 ME. Following careful evaluation by the Instrument Sub-committee, the Scientific Council and the Steering Committee, two-thirds of the projects were retained for a budget of approximately 40 ME. This set of projects has been split into three parts, the first to be started in 2019 as detailed below.

1	PROJET	DESCRIPTION	DELIVERY
	D11	Large area detector	2021
	D22++	Wide angle detector	2021
4	D16	Wide angle detector	2021
	D20c	Replacement detector	2021
	IN20	Monochromator and	
		multianalyser/detector	2021
	LADI-B	Second protein crystallography station	2019
Ş	IM2020 -NeXT	Public imaging beam line	2020
1	H15	Guide design	2019
2	NESSE2	Sample environment equipment	2019 - 2023
	BASTILLE2	Data treatment software	2019 - 2023

2030 and beyond!

- We had mainly young speakers (~50% PhD students) and the quality of the work and the presentations was really high.
- New developments and methods continue to be developed, e.g. AI, ML, quantum comp, ...
- ESS will soon be a reality and ILL remains in good shape

Looking forward to meet you again in 2022!

And this time in Lund, and not on screen!

