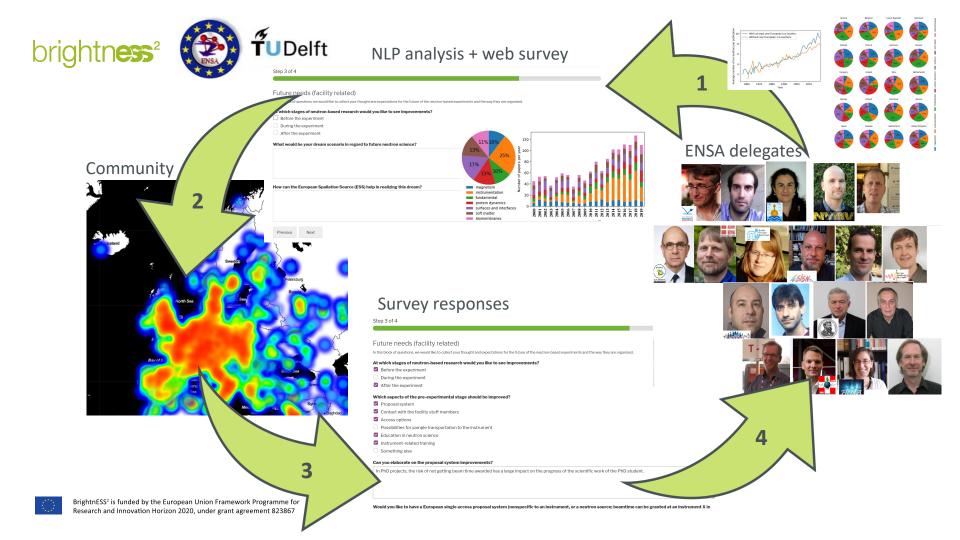


**Neutron community needs** 

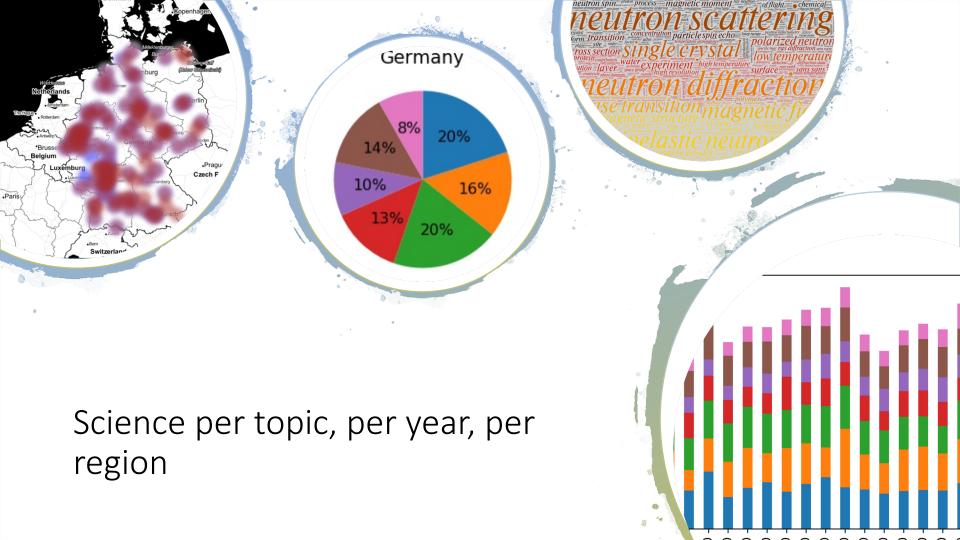
outcome of the survey

<u>Lambert van Eijck</u>, Evgenii Velichko, ENSA & TU Delft, Netherlands


Henrik Rønnow

EPFL, Switzerland

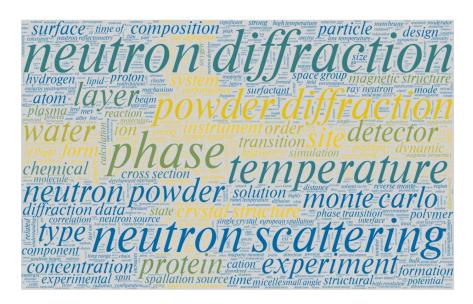
3rd General Assembly 17-Dec-2020











NLP community maps per country per topic (Germany as an example)





## Survey per country

#### Step 1 of 4



#### Dear scientist,

Thank you very much for taking the time to fill in our survey. It is a great opportunity to make our voice as a European neutron scientist community heard by European policymakers. The results of the analysis will be used for <a href="BrightnESS2">BrightnESS2</a> and LENS to define the European neutron landscape for the coming years. Some points of attention before you start the survey:



# Who are you?

### Step 2 of 4

### Your experience with neutrons until now

| ENSA and Brightness2 would like to get better understanding of the scientist forming the European neutron scattering community                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Your level of expertise as a "neutron scientist"                                                                                                          |
| Selected Value: 5                                                                                                                                         |
| 1 = novice, 10 = expert. Expertise can be experimental, interpretation, modelling, instrument design, etc.                                                |
| At which stage are you in your scientific career?                                                                                                         |
| ○ Student                                                                                                                                                 |
| O PhD candidate                                                                                                                                           |
| O Postdoc                                                                                                                                                 |
| O Permanent staff member                                                                                                                                  |
| O Professor/group leader                                                                                                                                  |
| Other                                                                                                                                                     |
| Which percentage of your research activity is neutron-related?                                                                                            |
|                                                                                                                                                           |
| Selected Value: 50                                                                                                                                        |
| Including all of the time you spend starting from experimental design and including all the steps of data gathering, treatment, modelling and publishing. |
| Which of the topics found by our AI are related to your research?                                                                                         |
| ☐ Magnetism                                                                                                                                               |
| Instrumentation                                                                                                                                           |





# Your needs (1)

Step 3 of 4

### Future needs (facility related)

In this block of questions, we would like to collect your thought and expectations for the future of the neutronbased experiments and the way they are organized.

| At which stages of neutron-based research would you like to see improvements? |
|-------------------------------------------------------------------------------|
| Before the experiment                                                         |
| During the experiment                                                         |
| After the experiment                                                          |
| What would be your dream scenario in regard to future neutron science?        |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |
| How can the European Spallation Source (ESS) help in realizing this dream?    |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |
| Previous Next                                                                 |



# Your needs (2)

Step 4 of 4

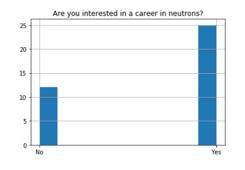
### Future needs (not-facility related)

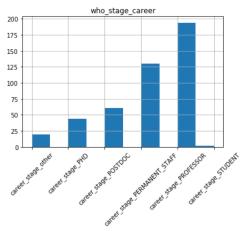
Science is typically not-for-profit, but acquiring/securing funding can consume a lot of time for a scientist. Here we would like to hear your opinion on such factors that are not directly related to your neutron science, but that can have a large impact on what neutron science you can do.

| ı | wai | nt 1 | fundi | ng | SC | hemes | impr | oved | as | follows | 5 |
|---|-----|------|-------|----|----|-------|------|------|----|---------|---|
|   |     |      |       |    |    |       |      |      |    |         |   |

| ☐ Small-scale (experiment-specific): [money for travel, accommodation, students joining, colleagues joining]                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ☐ Medium-scale (project-specific) [phd-candidate lifetime – 3-4 years, covering all the costs, including salary, equipment and materials]                                                       |
| ☐ Large-scale (topic-specific) [inter-institutional/international/European collaboration in endeavor to solve a global challenge, neutron research presents less than 51% of the whole package] |
| Other                                                                                                                                                                                           |
| Other things that would boost my neutron science:                                                                                                                                               |
| ☐ Better education/training of students                                                                                                                                                         |
| Experts in my field at the facility, during the experiment                                                                                                                                      |
| $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                        |
| ☐ Students joining the experiment                                                                                                                                                               |
| ☐ FAIR data                                                                                                                                                                                     |
| ☐ Scientific meetings other than the current (workshop, conference, ad-hoc) possibilities                                                                                                       |
| ☐ Better/more collaboration with industry                                                                                                                                                       |
| Othor                                                                                                                                                                                           |







# Outcome of survey

## 13500 inter-related answers + comments

### Questions relate to:

Career stage, expertise, methods used, complementary methods used, instruments used, future needs before experiment, future needs after experiment, instrument needs, needs for training/expertise, funding needs, etc.





Inter-relations between questions/answers are depicted in 'wordclouds'

### "WHO" who\_factors\_facility\_choice\_FLUX who\_neutron\_centers\_FRM\_II\_who\_software\_ORIGIN who neutron\_centers\_ISIS who proposal who\_factors\_facility\_choice SAMPLE ENVIRONMEN who instrument INS other\_analysis\_methods lab X rays who sample environment CRYOSTAT who factors facility choice PREVIOUS EXPERIENCE

"FUTURE NEEDS"









### brightness<sup>2</sup>

# Wordclouds for grouping

who instrument DIFFRACTION other analysis methods lab X rays who software METHOD SPECIFIC other analysis methods large scale X rays who neutron centers IL Lote says revenues PRISS
who factors facility choice BEAMLINE SCIENTIST who factors facility choice SAMPLE ENVIRONMENT who sample environment CRYOSTAT who software FACILITY who proposal system OK who factors facility choice PREVIOUS EXPERIENCE who societ relevance OTHER who\_industry\_collaboration\_NO\_who\_industry\_staxs who\_neutron\_centers\_FRM\_II who\_found\_topics\_MAG. who factors facility choice FLUX carer these PROFESSOR who neutron centers ISIS who software ORIGIN who instrument INS
who instrument INS
who instrument INSIGNATION
who instrument INSI

improve DIFFRACTION flux improve\_DIFFRACTION\_AVAILABILITY improve\_post\_exp\_DATA\_TREATMENT improve\_post\_exp\_DATA\_MODELLING\_SIMULATIONS improve\_post\_exp\_DATA\_ANALYSIS boost INDUSTRY COLLABORATION DOST EDUCATION TRAININGS STUDENTS

https://doi.org/10.1009/10.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.0001150.00001150.0001150.00001150.00001150.00001150.00001150.0001150.000 IMPROVE EXP. STATE AND STRUMENT
FAR. SON CONTROL OF THE PRACTION RESOLUTION. improve funding MEDIUM SCALE

boost FIELD EXPERTS DURING EXPERIMENTS improve\_funding\_SMALL\_SCALE boost\_STUDENTS\_JOINING\_EXPERIMENTS boost\_AI\_HELP\_improve\_DIFFRACTION\_SAMPLE\_ENV improve\_exp\_stage\_aspects\_EXPERIMENTAL\_SUPPORT\_

who factors facility choice FLUX who industry collaboration NO who student neutron career YES who found topics FUNDAMENTAL who\_proposal\_system\_OK who\_neutron\_centers\_ILL

who\_societ\_relevance\_OTHER who seek industry collaboration NO

rore\_post\_exp\_DATA\_TREATMENT boost STUDENTS JOINING EXPERIMENTS improve\_post\_exp\_DATA\_MODELLING\_SIMULATIONS improve funding SMALL SCALE

boost\_FIELD\_EXPERTS\_DURING\_EXPERIMENTS

improve\_funding\_MEDIUM\_SCALE

who\_factors\_facility\_choice\_ACCESSIBILITY career\_stage\_ who\_instrument\_SANS who\_industry\_collaboration\_NO who\_sample\_environment\_CRYOSTAT

who factors facility choice SAMPLE ENVIRONMEN,
who factors facility choice PREVIOUS EXPERIENCY
who found topics MAGNETISM who sample environment MAGNETIC FIELDS who found topics FUNDAMENTAL who societ relevance OTHER who\_proposal\_system\_OK who\_neutron\_centers\_ISIS

who instrument DIFFRACTION who\_software\_FACILITY who\_seek\_industry\_collaboration\_NO other\_analysis\_methods\_lab\_X\_rays =to\_found\_topic who\_factors\_facility\_choice\_FLUX

boost STUDENTS JOINING EXPERIMENTS improve\_funding\_LARGE\_SCALE

improve funding SMALL SCALE boost AI HELP

boost FIELD EXPERTS DURING EXPERIMENTS improve\_pre\_experimental\_aspects\_INSTRUMENT\_TRAINING improve post exp DATA MODELLING SIMULATIONS

boost\_EDUCATION\_TRAININGS\_STUDENTS improve\_exp\_stage\_aspects\_INSTRUMENT

improve\_post\_exp\_DATA\_TREATMENT

who\_instrument NSE who destrument QENSWho instrument SANS

who neutron centers ILI who factors facility choice PREVIOUS EXPERIENCE who\_factors\_facility\_choice\_BEAMLINE\_SCIENTIST
who\_proposal\_system\_OK\_other\_analysis\_methods\_DLS

who neutron centers FRM II who factors facility choice FLUX who\_found\_topics\_SOFT\_MATTER who\_software\_FACILITY

career stage PERMANENT STAFF who\_sample\_environment\_CRYOSTAT

who\_proposal\_system\_OK who increased the who neutron centers ILL who factors facility choice SAMPLE ENVIRONMENT other\_analysis\_methods\_lab\_X\_rays who\_societ\_relevance\_OTHER

who\_neutron\_contex\_LLB
who\_neutron\_contex\_SINQwho\_instrument\_DIFFRACTION who\_factors\_facility\_choice\_BEAMLINE\_SCIENTIST

notes found styles MAGNETISM who factors facility\_choice\_FLUX

who\_neutron\_centers\_ISIS who\_neutron\_centers\_FRM\_II
who\_industry\_collaboration\_NOwho\_neutron\_centers\_FRM\_III
who\_found\_topics\_INSTRUMENTATION

who societ relevance OTHER other\_analy-

career stage PROFESSOR who\_software\_FACILITY who\_neutron\_centers ILL

who measure additionary PES SOUTHUS
who neutron centers [SIS who neutron centers FRM]
to industry collaboration NO other malysis methods, electron microscopy who\_factors\_facility\_choice\_BEAMLINE\_SCIENTIST who sample environment CRYOSTAT --who\_instrument\_DIFFRACTION who\_lsri\_ESRF

other analysis methods\_lab\_X\_rays boost\_EDUCATION\_TRAININGS\_STUDENTS who factors facility choice SAMPLE ENVIRONMENT

who\_instrument SANS who lsri\_ESRF who factors facility choice FLUX

who found topics SOFT MATTER who neutron centers ILL who factors facility choice PREVIOUS EXPERIENCE

who\_proposal\_system\_OK who\_software FACILITY who\_neutron\_centers\_ISIS who\_factors\_facility\_choice\_BEAMLINE\_SCIENTIST other\_analysis\_methods\_lab\_X\_rays

who\_neutron\_centers\_FRM\_II who memory stone PROFFSSON who\_factors\_facility\_choice\_SAMPLE\_ENVIRONMENT

improve\_post\_exp\_DATA\_MODELLING\_SIMULATIONS improve\_exp\_stage\_aspects\_INSTRUMENT\_

prove funding SMALL SCALE improve\_NSE\_flux boost SCIENTIFIC MEETINGS boost NOUSTRY COLLABORATION improve\_funding\_MEDIUM\_SCALE

boost FIELD EXPERTS DURING EXPERIMENTS improve\_post\_exp\_DATA\_TREATMENT

improve\_NSE\_AVAILABILITY improve\_pre\_experimental\_aspects\_ACCESS

improve post exp DATA TREATMENT improve\_post\_exp\_DATA\_MODELLING\_SIMULATIONS DOOST STUDENTS JOINING EXPERIMENTS
ADDRESS ON THE ACTION ASSOLUTION THE PROPERTY AND ASSOCIATION THE PROPERTY AND ASSOCIATION THE PROPERTY ASSOCIA inprine pre experimental aspects ACCESS

boost AI HELP improve\_post\_exp\_DATA\_ANALYSIS

improve exp stage aspects INSTRUMENT

supere DiffERTION SUBJECTED Supere September Actional per
boost INDUSTRY\_COLLABORATION

Supere DiffERTION OF SUBJECTED who had Self who software FACILITY the nation control fills who had Self with the Self who control fills the nation control fills who had self self it is control fills the nation who had self self it is control fills the nation who factors feeling and the self in the se

boost\_FIELD\_EXPERTS\_DURING\_EXPERIMENTS

improve funding LARGE SCALE

improve post exp DATA ANALYSIS inproc ESS infrancia SKAIN DIFFRACTION And improve\_funding\_LARGE\_SCALE improve post exp DATA MODELLING SIMULATIONS boost INDUSTRY COLLABORATION INFORMED STREET STREET

improve\_exp\_stage\_aspects\_INSTRUMENT boost\_STUDENTS\_JOINING\_EXPERIMENTS 

poost\_FIELD\_EXPERTS\_DURING\_EXPERIMENTS improve\_exp\_stage\_aspects\_EXPERIMENTAL\_SUPPORT

boost AI HELP improve\_post\_exp\_DATA\_TREATMENT

improve exp stage aspects INSTRUMENT ---

boost\_FIELD\_EXPERTS\_DURING\_EXPERIMENTS improve\_exp\_stage\_aspects\_EXPERIMENTAL\_SUPPORT boost\_INDUSTRY\_COLLABORATION boost\_AI\_HELP. improve\_post\_exp\_DATA\_MODELLING\_SIMULATIONS

improve\_post\_exp\_DATA\_ANALYSIS -\_\_\_\_ improve post exp DATA TREATMENT improve\_funding\_MEDIUM\_SCALE

ENV improve funding LARGE SCALE boost STUDENTS JOINING EXPERIMENTS

who\_instrument IMAGING who\_factors\_facility\_choice\_BEAMLINE\_SCIENTIST
who\_software\_ORGIN other\_analysis\_methods\_lab\_X\_rays who\_neutron\_centers\_FRM II who factors facility choice PREVIOUS EXPERIENCE

who neutron centers SINO who neutron centers ILL other\_analysis\_methods\_microscopywho\_proposal\_system\_OK who\_factors\_facility\_choice\_SAMPLE\_ENVIRONMENT who\_neutron\_centers\_HZB who\_sample\_environment CRYOSTAT who\_found\_topics\_INSTRUMENTATION COMP AND IN

who\_software\_FACILITY who\_factors\_facility\_choice\_FLUX who wentrow centers ISIS who instrument DIFFRACTION

who\_instrument IN

who instrument DIFFRACTION who neutron centers ISIS who factors facility choice PREVIOUS EXPERIENCE who sample environment CRYOSTAT who beri ESRF who found topics MAGNETISM
who keeper tachty choice BEAMLINE SCIENTIST

who\_industry\_collaboration\_NO who\_software\_FACILITY who nearton centers FRM II is not consequently the who software from the whom nearest the who factors facility\_choice\_FLUX to and subsequent of the analysis methods lab X rays

who neutron contex HZB who neutron centers ILL who\_societ\_relevance\_OTHER who\_proposal\_system\_OK who\_factors\_facility\_choice\_SAMPLE\_ENVIRONMENT

who instrument REFLECTOMETR other analysis methods lab X rays

who neutron centers ILL who factors facility choice FLUX career stage PROFESSOR who societ relevance OTHER who found topics SURFACES INTERFACES

who factors facility choice SAMPLE ENVIRONMENT who found topics SOFT MATTER who ker ESRF

who and pattern of Who instrument SANS

who are pattern who instrument sans a second of the second o

who instrument OENS who factors facility choice FLUX who neutron centers FRM II who software ORIGI

who neutron centers ILL who\_factors\_facility\_choice\_BEAMLINE\_SCIENTIST who\_societ\_relevance\_OTHER who\_neutron\_centers\_ISIS who\_proposal\_system\_OK who\_factors\_facility\_choice\_SAMPLE\_ENVIRONMEN

who\_instrument\_INS other\_analysis\_methods\_lab\_X\_rays who sample environment CRYOSTAT who\_industry\_collaboration\_NO who\_instrument\_SANS-

who factors facility choice PREVIOUS EXPERIENCE

------ improve\_post\_exp\_DATA\_TREATMENT improve exp stage aspects INSTRUMENT

boost FIELD EXPERTS DURING EXPERIMENTS boost SCIENTIFIC MEETINGS

boost INDUSTRY COLLABORATION -

improve funding MEDIUM SCALE

happens ESS automounts ODIN boost AI HELP boost EDUCATION TRAININGS STUDENTS

Market DATE AND A STANDARD IMPROVE funding SMALL SCALE

improve\_post\_exp\_DATA\_ANALYSIS insprose\_DIFFRACTION\_day boost FIELD EXPERTS DURING EXPERIMENTS improve INS SAMPLE ENV

improve\_exp\_stage\_aspects\_INSTRUMENT hoost\_EDUCATION\_TRAININGS\_STUDENTS

improve\_funding\_LARGE\_SCALE improve\_INS\_RESOLUTION improve exp stage aspects EXPERIMENTAL SUPPORT improve DIFFRACTION\_RESOLUTION

improve funding MEDIUM SCALE boost AI HELP SHOW DOTRICTION RICKGROOM

improve\_INS\_BACKGROUND improve\_DIFFRACTION\_AVAILABILITY

boost FIELD EXPERTS DURING EXPERIMENTS

improve\_post\_exp\_DATA\_MODELLING\_SIMULATIONS improve\_exp\_stage\_aspects\_INSTRUMENT boost\_STUDENTS\_JOINING\_EXPERIMENTS\_
injurie\_ESS\_intrinsects\_SKAW boost\_AI\_HELP
boost\_INDUSTRY\_COLLABORATION injurier\_LSS\_intri

improve\_funding\_LARGE\_SCALE SQUEETERS SATISFORMERS SAT mprove\_funding MEDIUM SCALE

improve\_post\_exp\_DATA\_TREATMENT improve\_post\_exp\_DATA\_ANALYSIS

improve\_exp\_stage\_aspects\_EXPERIMENTAL\_SUPPORT improve funding\_SMALL\_SCALE improve\_pre\_experimental\_aspects\_INSTRUMENT\_TRAINING

improve\_funding\_LARGE\_SCALE = TO A STATE OF THE PROPERTY OF TH boost\_FIELD\_EXPERTS\_DURING\_EXPERIMENTS

improve\_post\_exp\_DATA\_MODELLING\_SIMULATIONS

MOTOR CONT. ACCESSION DESCRIPTION OF THE PROPERTY OF THE PROPE improve\_exp\_stage\_aspects\_EXPERIMENTAL\_SUPPORT

improve\_funding\_MEDIUM SCALE nal aspects\_CONTACT\_STAFF boost\_INDUSTRY\_COLLABORATION

improve\_post\_exp\_DATA\_ANALYSIS

improve funding SMALL SCALE' improve\_exp\_stage\_aspects\_INSTRUMENT

BrightnESS<sup>2</sup> is funded by the European Union Framework Programme for Research and Innovation Horizon 2020, under grant agreement 823867



# Projection on the 'career axis'



other analysis methods lab X who\_factors\_facility\_choice\_SAMPLE\_ENVIRONMENT



improve\_exp\_stage\_aspects\_EXPERIMENTAL\_SUPPORT









boost STUDENTS JOINING EXPERIMENTS improve funding SMALL SCALE boost AI HELF boost FIELD EXPERTS DURING EXPERIMENTS improve\_pre\_experimental\_aspects\_INSTRUMENT\_TRAINING improve\_post\_exp\_DATA\_ANALYSIS improve\_post\_exp\_DATA\_MODELLING\_SIMULATIONS boost EDUCATION TRAININGS STUDENTS SUPPONE EXS. SOMEONIC DREAM improve exp stage aspects INSTRUMENT improve\_post\_exp\_DATA\_TREATMENT boost SCIENTIFIC MEETINGS



who found topics INSTRUMENTATION

# Projection on the 'method axis'





improve\_exp\_stage\_aspects\_INSTRUMENT

improve funding LARGE SCALE MYNNE EXP. STATE OFFICE ACCOMMENTION

who influence PTIBON other analysis methods other other analysis methods electron microscopy boost FIELD EXPERTS DURING EXPERIMENTS other analysis\_methods\_lab\_X\_rays improve exp stage aspects INSTRUMENT who factors facility choice BEAMLINE SCIENTIST boost STUDENTS JOINING EXPERIMENTS ...... other analysis methods large scale X rays boost AI HELP who neutron centers II who\_factors\_facility\_choice\_FLUX\_career\_stage\_PROFESSOR improve\_funding\_LARGE\_SCALE\_waprove\_REFLECTOMETRY\_flux
improve\_pre\_experimental\_aspects\_CONTACT\_STAFF\_boost\_SCIENTIFIC\_METTINGS who\_found\_topics\_SURFACES\_INTERFACES who\_sample\_environment\_CRYOSTAT\_who\_industry\_collabor who\_iodary\_collaboration\_TES\_SOMETIMES who\_proposal system OK who\_software\_ORIGIN improve post exp DATA TREATMENT who software FACILITY who neutron centers FRM II improve\_post\_exp\_DATA\_ANALYSIS who factors facility choice SAMPLE ENVIRONMENT who neutron centers HZB who neutron centers ISIS improve\_exp\_stage\_aspects\_EXPERIMENTAL\_SUPPORT uto\_seck\_industry\_collaboration\_NO who instrument SANS other\_analysis\_methods\_DLS who Tactors facility choice PREVIOUS EXPERIENCE improve pre experimental aspects INSTRUMENT TRAINING who seek swhatey\_collaboration\_NO who sample environment CRYOSTAT

who factors facility choice BEAMLINE SCIENTIST other analysis methods lab X rays who factors facility choice PREVIOUS EXPERIENCE who\_neutron\_centers\_ILLD who\_neutron\_centers\_ILLL other\_analysis\_methods\_microscopywho\_proposal\_system\_OK improve post exp DATA ANALYSIS who factors facility choice SAMPLE ENVIRONMENT

who\_societ\_relevance\_OTHER

who\_neutron\_centers HZB who\_sample\_environment\_CRYOSTAT who\_found\_topics\_INSTRUMENTATION who\_software\_FACILITY who factors\_facility\_choice\_FLUX who\_neutron\_centers\_ISIS\_who\_instrument\_DIFFRACTION

improve\_pre\_experimental\_aspects\_ACCESS improve\_INS\_AVAILABILITY boost INDUSTRY COLLABORATION OF SOME STORY COLLABORATION improve\_DIFFRACTION\_AVAILABILITY improve\_IMAGING\_RESOLUTION

improve\_post\_exp\_DATA\_TREATMENT

improve\_exp\_stage\_aspects\_INSTRUMENT

improve\_funding\_SMALL\_SCALE

who software ORIGIN other analysis methods large scale X who factors facility choice PREVIOUS EXPERIENCE other analysis methods electron microscopy who proposal system OK who software FACILITY who neutron centers ISIS who factors facility choice BEAMLINE SCIENTIST The internal VIV IIS other analysis methods lab X ravs who neutron centers FRM II who neutron centers HZB are graph of the who neutron centers which was a second content of the neutron centers.

who factors facility choice SAMPLE ENVIRONMENT

who\_industry\_collaboration\_NO who societ relevance OTHER

who factors facility choice FLUX

who found topics SOF

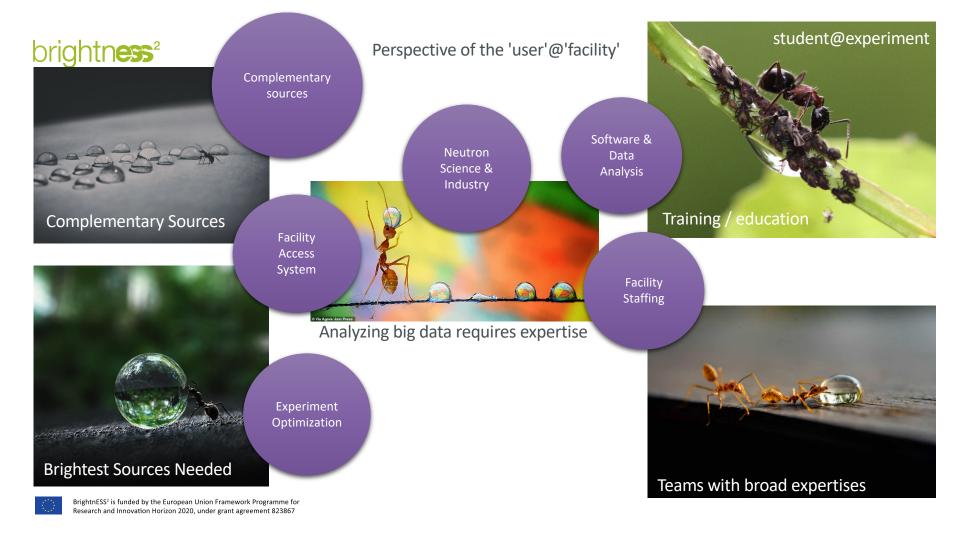
boost FIELD EXPERTS DURING EXPERIMENTS improve exp support beamline scientist improve exp stage aspects EXPERIMENTAL SUPPORT improve\_post\_exp\_DATA\_MODELLING\_SIMULATIONS improve exp stage aspects INSTRUMENT

improve\_post\_exp\_DATA\_TREATMENT

improve post exp DATA ANALYSIS

prove\_SANS\_SAMPLE\_ENV\_improve\_funding\_LARGE\_SCALE boost STUDENTS JOINING EXPERIMENTS

### brightness<sup>2</sup>


Survey Written Responses + Comments

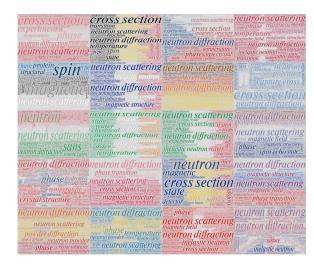
Interpreted By ENSA delegates



BrightnESS<sup>2</sup> is funded by the European Union Framework Programme for Research and Innovation Horizon 2020, under grant agreement 823867












### outlook:

- extend NLP database, community science analysis. Develop tools for D2.9.
- sustainability: disseminate developed tools to national communities
- ENSA publication on method+results
- webinar with feedback to community about the report
- collaboration with ESUO on LENS/LEAPS initiative

