

open science cloud

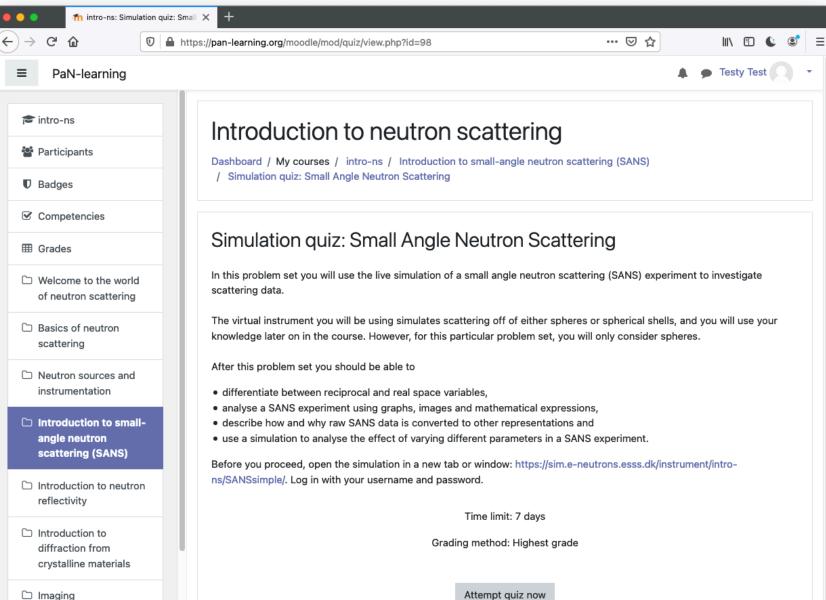
pan-learning.org: Demo of McStas-McXtrace simulator and Jupyter-bridge

February 9th, 2021 Author: Peter Willendrup, ESS DMSC

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 823852

1. McStas and McXtrace web-simulator

• Example use case, intro-ns topic


"Introduction to small-angle neutron scattering (SANS)"

n Course: Introduction to neutron X + <) → C' @ ... 🖂 🏠 ٢ III\ 🗊 Image: the section of the section ≡ Testy Test PaN-learning Introduction to small-angle neutron scattering (SANS) 🞓 intro-ns This topic introduces small angle neutron scattering (SANS), which is a technique used to provide information on the size and shape of particles on length scales from ~1 nm to ~1000 nm. Participants This module is estimated to take 7-8 hours including reading and exercises. Badges Prerequisites: You will need to have completed Basics of neutron scattering (first topic) before engaging with the ✓ Competencies activities of this topic. Also, you will need to know about mathematical plotting and fitting to complete this topic. I Grades Learning goals Welcome to the world Take some time to read them. Afterwards, new activities will pop up, of neutron scattering Slides: SANS theory Basics of neutron 5.3MB PDF document scattering An introduction to Small Angle Neutron Scattering theory by Kell Mortensen, Niels Bohr Institute, University of Copenhagen Neutron sources and instrumentation Reading: Neutron scattering cross section from nano-sized particles Structure factor and form factor Introduction to smallangle neutron Wiki problem: The Fourier transform scattering (SANS) One dimensional case Wiki problem: Form factor from spheres Introduction to neutron reflectivity Wiki problem: Polydisperse spheres 🇹 Simulation quiz: Small Angle Neutron Scattering Introduction to diffraction from Reading: Useful model - free approximations in SANS crystalline materials SANS instrumentation

"Simulation quiz"

<u>Simulation quiz</u>: Small Angle Neutron Scattering

Click simulator link

Attempt quiz now

00

(←) → 健 🏠

👔 intro-ns: Simulation quiz: Small 🗙

Instrument

🗊 🔒 🗝 https://sim.e-neutrons.esss.dk/instrument/intro-ns/SANSsimple/

<u>iow menu</u> -SANSsimple (click for docum	(entation)	Logged in as testytest (<u>see recent simruns</u>)
<u>,</u>	Sin	LD 1 Slit 2 Sample Beamstop
	Source with guides and velocity selector	LC
-Parameters for SANSsimple-		
pinhole_rad [m] :	0.004	radius of the collimating pinholes (0.004)
LC [m] :	3	length of the collimator – distance between pinholes (3)
LD [m] :	3	distance between the last pinhole slit and detector (3)
Lambda [AA] :	6	Average wavelength traced from source (6)
DLambda [AA] :	0.6	Wavelength band +/- traced from source (0.6)
R [AA] :	400	radius of the hard, monodisperse spheres in the sample (400)
dR [AA] :	0	Normal variance of Radius (0)
dbilayer [AA] :	35	Thickness of spherical shell, only relevant when SAMPLE==2 (35)
PHI [1] :	0.01	Volumefraction of the hard, monodisperse spheres in the sample (0.01)
Delta_Rho [fm/AA^3] :	0.6	Volume specific scattering length density contrast of the hard, monodisperse spheres in the sample as compared to the solution (0.6)
Qmax [AA^-1] :	0.3	Maximum scattering vector allowed by geometry to hit the detector area (0.3)
BEAMSTOP [0/1] :	1	If set, the beamstop is inserted in front of the detector in order to block the transmitted beam
SAMPLE [0/1/2] :	1	When SAMPLE==0, no sample is used, SAMPLE==1 sample is composed of hard spheres, if SAMPLE==2 sample is composed ofspherical shells. (1)
Sigma_a [barn] :	0	Absorption crossection of the sample (0)
Runtime configuration		
neutron rays:	1000000	
simulation steps:	1	
random seed:	0	
gravity:		
Start simulation run		
		Launch (ensure recalculation)

× +

... ⊠ ☆

Ⅲ\ 🗉 🗳 🕙

This project has received funding from the European Union's Horizon 2020 I

Sketch of the instrument

		Machine Mary
		panosc McStas McXtr
Show menu		Logged in as testytest (<u>see recent simruns</u>)
-SANSsimple <u>(click for documenta</u>	ation)	
	Senre with guidea and velocity selector	LD 1 Slit 2 Sample Beamtop LC Detector
Parameters for SANSsimple		
pinhole_rad [m] :	0.004	radius of the collimating pinholes (0.004)
LC [m] :	3	length of the collimator – distance between pinholes (3)
LD (m) :	3	distance between the last pinhole slit and detector (3)
Lambda [AA] :	6	Average wavelength traced from source (6)
DLambda [AA] :	0.6	Wavelength band +/- traced from source (0.6)
R [AA] :	400	radius of the hard, monodisperse spheres in the sample (400)
dR [AA] :	0	Normal variance of Radius (0)
dbilayer [AA] :	35	Thickness of spherical shell, only relevant when SAMPLE==2 (35)
PHI [1] :	0.01	Volumefraction of the hard, monodisperse spheres in the sample (0.01)
Delta_Rho [fm/AA^3] :	0.6	Volume specific scattering length density contrast of the hard, monodisperse spheres in the sample as compared to the solution $(0,6)$
Qmax [AA^-1] :	0.3	sample as compared to the solution (0.6) Maximum scattering vector allowed by geometry to hit the detector area (0.3)
BEAMSTOP [0/1] :	1	If set, the beamstop is inserted in front of the detector in order to block the transmitted beam (1)
SAMPLE [0/1/2] :	1	When SAMPLE==0, no sample is used, SAMPLE==1 sample is composed of hard spheres, if
Sigma a (barn) -		SAMPLE==2 sample is composed of spherical shells. (1)
Sigma_a [barn] :	0	Absorption crossection of the sample (0)
-Runtime configuration		
neutron rays:	1000000	
simulation steps:	1	
random seed:	0	

A web-based interface for McStas and McXtrace.

00

 $(\leftarrow) \rightarrow$ C a

👔 intro-ns: Simulation quiz: Small 🗙

Instrument

Sketch of the instrument

Instrument-specific simulation parameters

		panosc McStas McXtrace
		particular particular to the second s
<u>ow menu</u> SANSsimple <u>(click for documen</u>	tation)	Logged in as testytest (<u>see recent simruns</u>) Logout
senssimple <u>genek for documen</u>		
	Source with guides and velocity selector	LD Sin 2 Sample LC Detector Detector
Parameters for SANSsimple—		
pinhole_rad [m] :	0.004	radius of the collimating pinholes (0.004)
LC [m] :	3	length of the collimator – distance between pinholes (3)
LD [m] :	3	distance between the last pinhole slit and detector (3)
Lambda [AA] :	6	Average wavelength traced from source (6)
DLambda [AA] :	0.6	Wavelength band +/- traced from source (0.6)
R [AA] :	400	radius of the hard, monodisperse spheres in the sample (400)
dR [AA] :	0	Normal variance of Radius (0)
dbilayer [AA] :	35	Thickness of spherical shell, only relevant when SAMPLE==2 (35)
PHI [1] :	0.01	Volumefraction of the hard, monodisperse spheres in the sample (0.01)
Dalta Dha Kas (AAA2)		Volume specific scattering length density contrast of the hard, monodisperse spheres in the
Delta_Rho [fm/AA^3] :	0.6	sample as compared to the solution (0.6)
Qmax [AA^-1] :	0.3	Maximum scattering vector allowed by geometry to hit the detector area (0.3)
BEAMSTOP [0/1] :	1	If set, the beamstop is inserted in front of the detector in order to block the transmitted beam (1)
SAMPLE [0/1/2] :	1	When SAMPLE==0, no sample is used, SAMPLE==1 sample is composed of hard spheres, if
		SAMPLE==2 sample is composed of spherical shells. (1)
Sigma_a [barn] :	0	Absorption crossection of the sample (0)
Runtime configuration		
neutron rays:	1000000	
simulation steps:	1	
random seed:	0	
gravity:	0	
granty.		
Start simulation run		
		Launch
		(ensure recalculation)

... ⊠ ☆

III\ 🗉 🕒 🜒

×

🗊 🔒 🗝 https://sim.e-neutrons.esss.dk/instrument/intro-ns/SANSsimple/

This project has received funding from the European Union's Horizon 2020

Sketch of the instrument

Instrument-specific simulation parameters

Generic simulation
 parameters

	*	۶	*	
*				
*				
*				

	This project has received funding from the European Union's Horizon 2020
--	--

۵	🔽 🔒 🗝 https://	/sim.e-neutrons. esss.dk /i	nstrument/intro-ns/SANSsimple/	ເ ☆	liiX	∎	C	۲
Show menu			Logged in as testytes	st (see recent simruns)	McStas McXtra	ce		
-SANSsimple	e <u>(click for documenta</u>	Sin 1 Source with guides and velocity selector	LD Slit 2 LC LC		Logout			
-Parameters	for SANSsimple							
pinhole_rad LC [m] :	d [m] :	0.004	radius of the collimating pinholes (0.004) length of the collimator – distance between pinholes (3)					
LD (m) : Lambda (AA DLambda (A	-	3 6 0.6	distance between the last pinhole slit and detector (3) Average wavelength traced from source (6) Wavelength band +/- traced from source (0.6)					
R [AA] : dR [AA] :		400	radius of the hard, monodisperse spheres in the sample (4) Normal variance of Radius (0)	00)				
dbilayer [AA PHI [1] :	A] :	35 0.01	Thickness of spherical shell, only relevant when SAMPLE== Volumefraction of the hard, monodisperse spheres in the s	ample (0.01)				
Delta_Rho [Qmax [AA^	[fm/AA^3] :	0.6	Volume specific scattering length density contrast of the has sample as compared to the solution (0.6) Maximum scattering vector allowed by geometry to hit the		eres in the			
BEAMSTOP	[0/1]:	1	If set, the beamstop is inserted in front of the detector in o When SAMPLE==0, no sample is used, SAMPLE==1 sample	order to block the transr				
SAMPLE [0/ Sigma_a [ba		0	SAMPLE==2 sample is composed ofspherical shells. (1) Absorption crossection of the sample (0)					
-Runtime co	onfiguration					ן ר		
neutron ray simulation		1000000 1						
random see gravity:	ed:	0						
-Start simula	ation run		Launch					

 \times +

👔 intro-ns: Simulation quiz: Small 🗙

00

Instrument

A web-based interface for McStas and McXtrace

Sketch of the instrument

Instrument-specific • simulation parameters

Generic simulation • parameters

	*	۶	*	
*				
*				
*				

This project has received funding from the European Onion's honzon 2020	This project has received funding from the European Union's Horizon 2	020
---	---	-----

Ac	cess to other inst	cruments McStas
Show menu — SANSsimple (click for docum	entation)	Logged in as testytest (<u>see recent simruns</u>)
	Source with gidea and vehicity selector	LD LD Beamstep LC Detector
Parameters for SANSsimple-		
pinhole_rad [m] :	0.004	radius of the collimating pinholes (0.004)
LC [m] :	3	length of the collimator – distance between pinholes (3)
LD [m] :	3	distance between the last pinhole slit and detector (3)
Lambda [AA] :	6	Average wavelength traced from source (6)
DLambda [AA] :	0.6	Wavelength band +/- traced from source (0.6)
R [AA] :	400	radius of the hard, monodisperse spheres in the sample (400)
dR [AA] :	0	Normal variance of Radius (0)
dbilayer [AA] :	35	Thickness of spherical shell, only relevant when SAMPLE==2 (35)
PHI [1] :	0.01	Volumefraction of the hard, monodisperse spheres in the sample (0.01)
Delta_Rho [fm/AA^3] :	0.6	Volume specific scattering length density contrast of the hard, monodisperse spheres in the sample as compared to the solution (0.6)
Qmax [AA^-1] :	0.3	Maximum scattering vector allowed by geometry to hit the detector area (0.3)
BEAMSTOP [0/1] :	1	If set, the beamstop is inserted in front of the detector in order to block the transmitted bea
SAMPLE [0/1/2] :	1	When SAMPLE==0, no sample is used, SAMPLE==1 sample is composed of hard spheres, if SAMPLE==2 sample is composed ofspherical shells. (1)
Sigma_a [barn] :	0	Absorption crossection of the sample (0)
-Runtime configuration		
	1000000	
neutron rays: simulation steps:	1000000	
random seed:	0	
gravity:		
gravity.		

A web-based interface for McStas and McXtrace

6 0

Simulation scenario: SANS experiment, monodisperse, hard spheres in thin solution

Instrument setup: collimation, simulated wavelength etc.

Sample parameters, physical constants etc.

Detection specifics

pinhole_rad [m] :	0.004	radius of the collimating pinholes (0.004)
LC [m] :	3	length of the collimator - distance between pinholes (3)
LD [m] :	3	distance between the last pinhole slit and detector (3)
Lambda [AA] :	6	Average wavelength traced from source (6)
DLambda [AA] :	0.6	Wavelength band +/- traced from source (0.6)
R [AA] :	400	radius of the hard, monodisperse spheres in the sample (400)
dR [AA] :	0	Normal variance of Radius (0)
dbilayer [AA] :	35	Thickness of spherical shell, only relevant when SAMPLE==2 (35)
PHI [1] :	0.01	Volumefraction of the hard, monodisperse spheres in the sample (0.01)
Delta_Rho [fm/AA^3] :	0.6	Volume specific scattering length density contrast of the hard, monodisperse spheres in the sample as compared to the solution (0.6)
Qmax [AA^-1] :	0.3	Maximum scattering vector allowed by geometry to hit the detector area (0.3)
BEAMSTOP [0/1] :	1	If set, the beamstop is inserted in front of the detector in order to block the transmitted beam (1)
SAMPLE [0/1/2] :	1	When SAMPLE==0, no sample is used, SAMPLE==1 sample is composed of hard spheres, if SAMPLE==2 sample is composed of spherical shells. (1)
Sigma_a (barn) :	0	Absorption crossection of the sample (0)

	rarameters for sanssimple		
	pinhole_rad [m] :	0.004	radius of the collimating pinholes (0.004)
Simulator	LC [m] :	3	length of the collimator - distance between pinholes (3)
Simulator	elements	3	distance between the last pinhole slit and detector (3)
	Lambda [AA] :	6	Average wavelength traced from source (6)
	DLambda [AA] :	0.6	Wavelength band +/- traced from source (0.6)
	R [AA] :	400	radius of the hard, monodisperse spheres in the sample (400)
	dR [AA] :	0	Normal variance of Radius (0)
	dbilayer [AA] :	35	Thickness of spherical shell, only relevant when SAMPLE==2 (35)
	PHI [1] :	0.01	Volumefraction of the hard, monodisperse spheres in the sample (0.01)
	Delta_Rho [fm/AA^3] :	0.6	Volume specific scattering length density contrast of the hard, monodisperse spheres in the sample as compared to the solution (0.6)
	Qmax [AA^-1] :	0.3	Maximum scattering vector allowed by geometry to hit the detector area (0.3)
Simulation launch	BEAMSTOP [0/1] :	1	If set, the beamstop is inserted in front of the detector in order to block the transmitted beam (1)
specifics:	SAMPLE [0/1/2] :	1	When SAMPLE==0, no sample is used, SAMPLE==1 sample is composed of hard spheres, if SAMPLE==2 sample is composed ofspherical shells. (1)
Statistics	Sigma_a [barn] :	0	Absorption crossection of the sample (0)
• # steps in a "scan"			
(combine with e.g.	-Runtime configuration		
, O			

R=100,	400)

• RNG seed

• Gravitation - for neutrons

aunch' culation
culation
simulating"
o be shown
not read
mulation

A web-based interface for McStas and McXtrace.

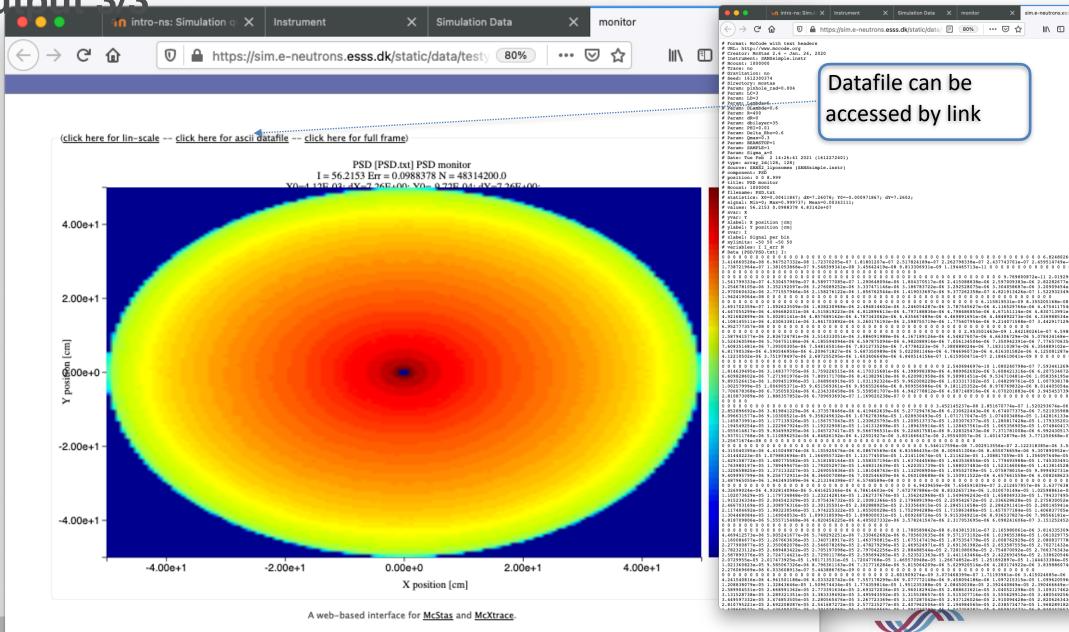
Example output 1/3 (from default parameters)

	Instrument X Simulation Data X T						
	$\leftarrow \rightarrow C \ \ \textcircled{0} \ \ \end{array} \ \textcircled{0} \ \ \ \ \ \end{array} \ \ \ \ \ \ \ \ \ \ \ \ \ $						
	McStas McXtrace						
	SANSsimple						
	Loaded cache data from 14:26:58, 02/02-2021						
	Reconfigure						
Circulation info state sta	Simulation						
Simulation info, stats etc.	params: pinhole_rad=0.004 LC=3 LD=3 Lambda=6 DLambda=0.6 R=400 dR=0 dbilayer=35 PHI=0.01 Delta_Rho=0.6 Qmax=0.3 BEAMSTOP=1 SAMPLE=1 Sigma_a=0						
	neutron rays: 1000000						
	random seed: 0						
	simulation steps: 1						
	Data plots (<u>click here for lin-scale</u>)						
Clickable, interactive detector outputs.							
(use 'l' or link to google	A V V I I I I I I I I I I I I I I I I I						
	1 1000 T 1000 T						
lin/log scale)							
	dolest dolest själlelikjen 2.00ert 4.00ert 1.00ert 1.00ert 2.00ert 8.00ert 4.00ert 4.00ert 2.00ert 8.00ert 4.00ert 1.00ert 2.00ert 8.00ert 4.00ert 1.00ert						
	Instrument layout (<u>click here to view in a new tab</u> and <u>click here for simple 2D view</u>)						
	mcrun SANSsimple.instrno-output-filestracencount=300dir=mcdisplay pinhole_rad=0.004 LC=3 LD=3 Lambda=6 DLambda=0.6 R=400 dR=0 dbilayer=35 PHI=0.01 Delta_Rho=0.6 Qmax=0.3 BEAMSTOP=1 SAMPLE=1 Sigma_a=0 Previous Pause Next Ray index 80 / 299 Keep rays Scatter Markers Reset view:						
	Home Side Top Show BB 🗹						
niect has received funding from the European Union's Horizon 2020 resear							

Example output 2/3

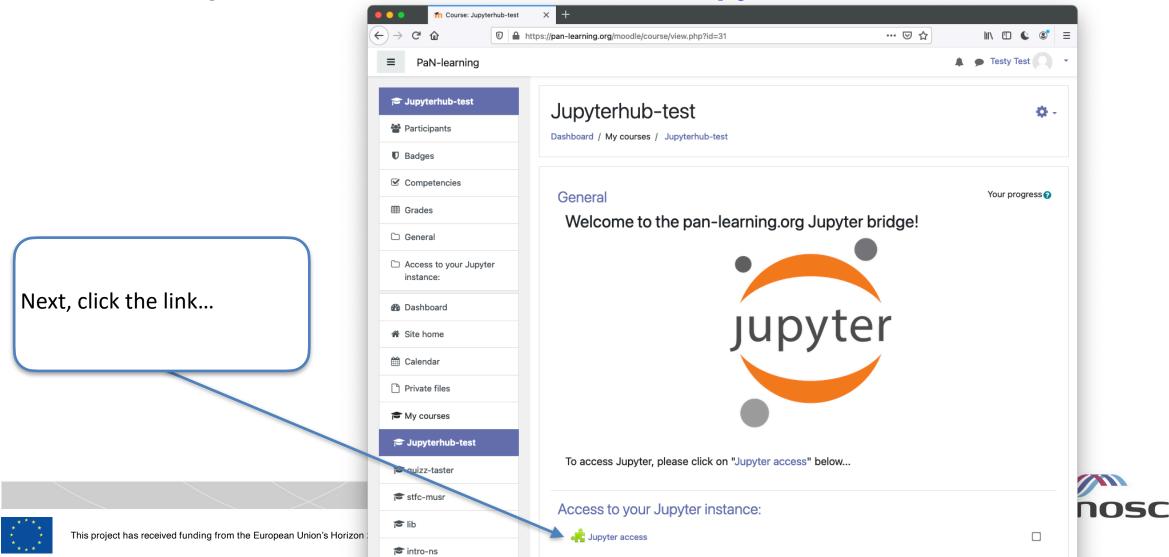
3D visualisation of the experiment

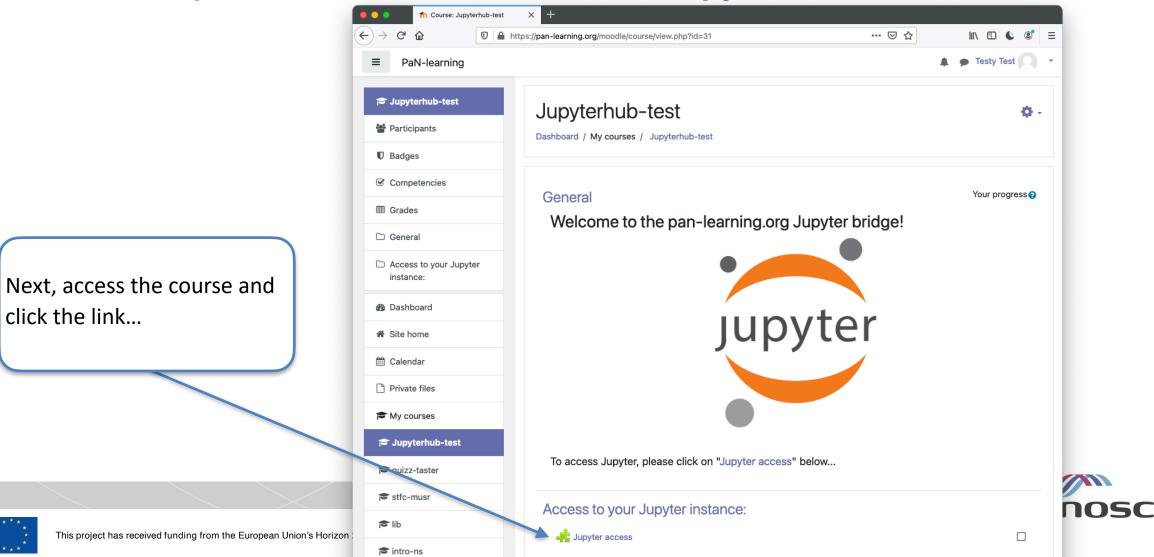
Downloadable outputs

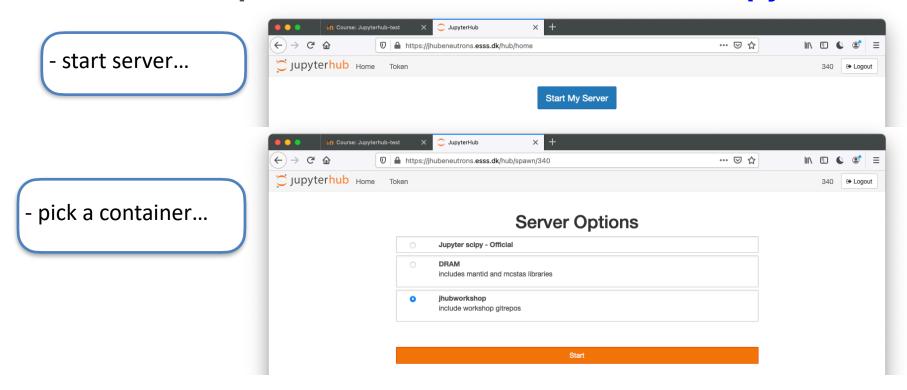

This project has received funding from the European Union's Horizon 202

	nt layout (<u>click her</u> e							
I	mcrun SANSsimj DLambda=0.6 R=	ole.instrno =400 dR=0 c	dbilayer=35 Pl	HI=0.01 De	lta_Rho=0.6 Qm	cdisplay pinhole ax=0.3 BEAMS7	_rad=0.004 LC=3 LD=3 TOP=1 SAMPLE=1 Sign	Lambda=6 na_a=0
	Previous	Pause	Next	Ray index	80 / 299	Keep rays 🗌	Scatter Markers	Reset view:
	Home Side	Тор	Sho	w BB 🔽				
		<u>1</u>						
		-						
				na se se se Se se				
		*						= V
			4					Parties and the second s
				×				
Download	d output files							
			simrun.tar	.gz SA	NSsimple.instr	stdout	stderr VRML	
				A web-base	d interface for <u>Mc</u>	Stas and McXtrace.		

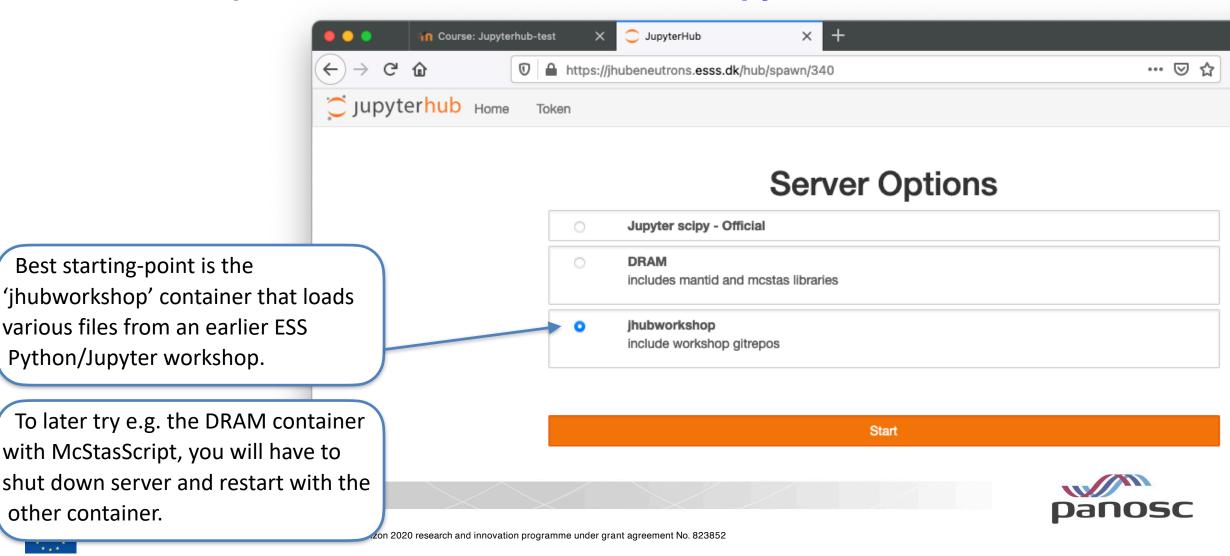
Example output 3/3

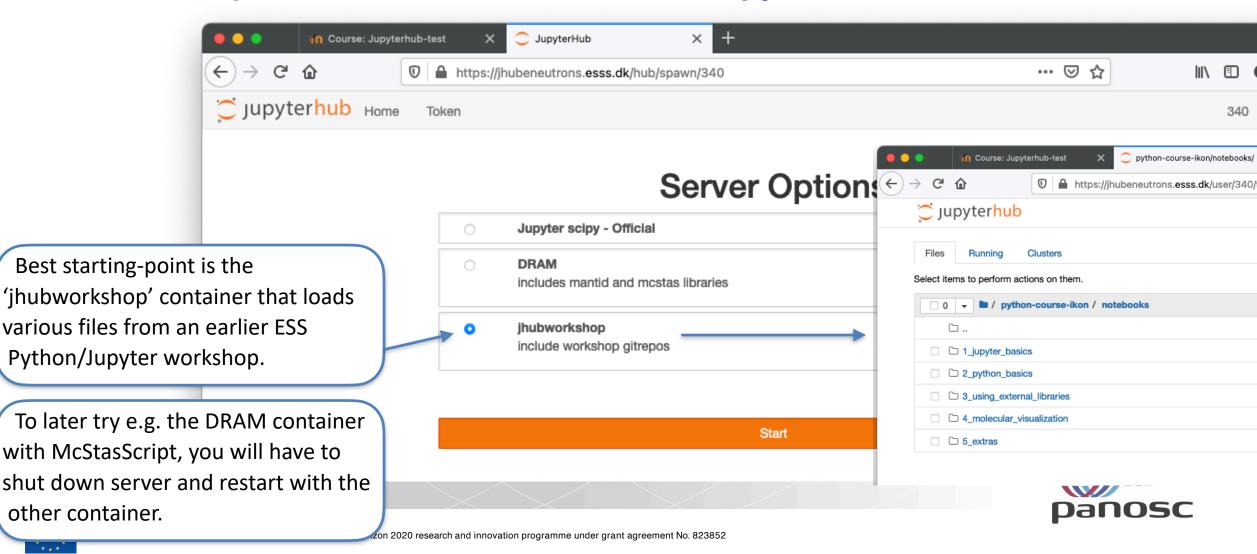


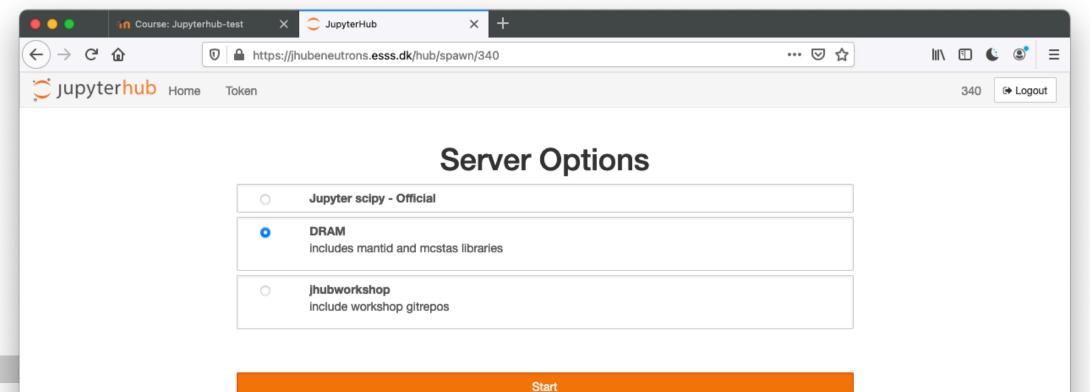

- Lin/log by pressing 'l' or link-toggle
- Drag/Zoomable by mouse



Danosc







- To access, please self-enrol to the course <u>Jupyterhub-test</u>
- The DRAM container contains McStasScript (you need to manually add/upload a notebook, e.g. <u>this one</u>

open science cloud

Thank you

peter.willendrup@ess.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 823852