SANS Resolution:

"Numerical evaluation, convolution and recombination of SANS instrument resolution using real-shape kernels"

Charles Dewhurst
Institut Laue-Langevin
Grenoble

SANS resolution is by no means perfect!

- Accurate consideration of the instrument resolution in data treatment and model fitting is vital to obtain accurate structural parameters
e.g.
- Particle size, shape and correlations, e.g. soft-matter
- Highly ordered structures, e.g. vortex lattice, gratings, nano-structures
- Yes, even for low resolution structures, e.g. 'hairy' biological structures

The 'Classic' approach:

- Assume resolution components to be Gaussian \rightarrow simple analytical mathematics
- This actually works quite well - but can it be improved?

Numerical approach:

- Use the 'Real-Shape' kernels of the individual resolution components and numerically perform the convolution
- Better representation of the true instrument resolution - but more computationally intensive

Low-q resolution

A. Rennie - PS4 latex, D33

High q resolution

4

4

