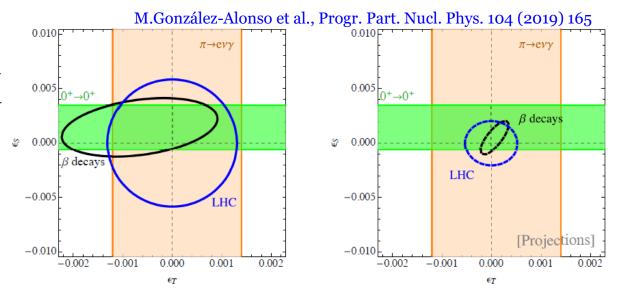


BRAND – search for exotic couplings in weak interactions using the transverse electron polarization in the decay of free neutrons

On behalf of the BRAND Collaboration

Kazimierz Bodek


Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

Searches for BSM physics in EW sector

- Searches for new particles (on-shell) in High Energy experiments
- Searches for deviations (from SM) of low energy observables (off-shell) in precision experiments
- EFT language to communicate and compare results

- V. Cirigliano et al., Nucl. Phys. B 830 (2010)
- T. Bhattacharya et al., Phys. Rev. D 85 (2012)
- V. Cirigliano et al., JHEP 1302 (2013)
- M.González-Alonso et al., Ann. Phys. 525 (2013)
- M.González-Alonso et al., Phys. Rev. Lett. 112 (2014)
- D. Dubbers et al., Ann. Rev. Nucl. Part. Sci 71, (2021) 139
- V. Cirigliano et al., Phys. Rev. Lett. 123, 051801 (2019)
- S. Ando et al., Phys. Lett. B 595 (2004) 250
- V. Cirigliano et al., Progr. Part. Nucl. Phys. 71 (2013) 93
- A. Falkowski et al., JHEP 126 (2021)

- Global fit using superallowed $0^+ \rightarrow 0^+$ transitions, neutron- and nuclear decays compared to LHC *pp* → *e*+MET+*X*
- In β-decays, neutron plays a prominent role !

Nucleon-level effective couplings

□ Lee-Yang effective Lagrangian (leading order, low momentum transfer):

$$\begin{aligned} -\mathcal{L}_{n \to pe^{-}\bar{\nu}_{e}} &= \bar{p} n \left(C_{S} \bar{e} \nu_{e} - C_{S}' \bar{e} \gamma_{5} \nu_{e} \right) \\ &+ \bar{p} \gamma^{\mu} n \left(C_{V} \bar{e} \gamma_{\mu} \nu_{e} - C_{V}' \bar{e} \gamma_{\mu} \gamma_{5} \nu_{e} \right) \\ &+ \bar{p} \sigma^{\mu \nu} n \left(C_{T} \bar{e} \sigma_{\mu \nu_{e}} \nu_{e} - C_{T}' \bar{e} \sigma_{\mu \nu} \gamma_{5} \nu_{e} \right) \\ &- \bar{p} \gamma^{\mu} \gamma_{5} n \left(C_{A} \bar{e} \gamma_{\mu} \gamma_{5} \nu_{e} - C_{A}' \bar{e} \gamma_{\mu} \nu_{e} \right) \\ &+ \bar{p} \gamma_{5} n \left(C_{P} \bar{e} \gamma_{5} \nu_{e} - C_{P}' \bar{e} \nu_{e} \right) + \text{h.c.} . \end{aligned}$$

$$\begin{aligned} C_{i} &= \frac{G_{F}}{\sqrt{2}} V_{ud} \overline{C}_{i} \\ \nabla_{i} \nabla_{j} \nabla_{$$

□ Effective nucleon-level couplings can be expressed in parton-level parameters: $\overline{C}_{\alpha} = a_{\alpha} (\epsilon_{\alpha} + \tilde{\epsilon}_{\alpha})$

$$\overline{C}_{V} = g_{V} (1 + \epsilon_{L} + \epsilon_{R} + \tilde{\epsilon}_{L} + \tilde{\epsilon}_{R}) \qquad \overline{C}_{S}' = g_{S} (\epsilon_{S} + \epsilon_{S})
\overline{C}_{V}' = g_{V} (1 + \epsilon_{L} + \epsilon_{R} - \tilde{\epsilon}_{L} - \tilde{\epsilon}_{R}) \qquad \overline{C}_{S}' = g_{S} (\epsilon_{S} - \tilde{\epsilon}_{S})
\overline{C}_{A} = -g_{A} (1 + \epsilon_{L} - \epsilon_{R} - \tilde{\epsilon}_{L} + \tilde{\epsilon}_{R}) \qquad \overline{C}_{P}' = g_{P} (\epsilon_{P} - \tilde{\epsilon}_{P})
\overline{C}_{A}' = -g_{A} (1 + \epsilon_{L} - \epsilon_{R} + \tilde{\epsilon}_{L} - \tilde{\epsilon}_{R}) \qquad \overline{C}_{T}' = 4 g_{T} (\epsilon_{T} + \tilde{\epsilon}_{T})
\overline{C}_{T}' = 4 g_{T} (\epsilon_{T} - \tilde{\epsilon}_{T})$$

□ Form factors are the key ingredients for translation of hadron-level coupling constants to parton-level parameters \Rightarrow from Lattice QCD

Neutron β-decay in Standard Model

Coll of a contract of a cont

$$H = \frac{G_{\rm F}}{\sqrt{2}} V_{ud} \quad \overline{p} \left\{ \gamma_{\mu} \left(1 + \lambda \gamma_{5} \right) + \frac{\mu_{\rm p} - \mu_{\rm n}}{2m_{\rm p}} \sigma_{\mu\nu} q^{\nu} \right\} n \quad \overline{e} \gamma^{\mu} \left(1 - \gamma_{5} \right) v_{\rm e}$$

- CKM matrix element
- $\lambda \equiv \frac{g_{\rm A}}{g_{\rm V}}$ axial-to-vector coupling constant ratio
- Can be extracted from:

Neutron lifetime

 V_{ud}

f – phase space factor $\delta_{\rm R}$ – radiative correction (model independent) $\Delta_{\rm R}$ – radiative correction (model dependent)

$$\tau^{-1} = \frac{G_{\rm F}^2 m_e^2}{2\pi^3} |V_{ud}|^2 f(1+\delta_{\rm R})(1+\Delta_{\rm R})(1+3\lambda_{\rm R})(1+3\lambda_{\rm$$

Angular distribution of decay products (correlation coefficients)

5

Neutron β-decay correlations

□ For polarized neutrons, measuring electron- and proton-momentum and transverse electron polarization:

$$d\Gamma \sim 1 + \boldsymbol{a} \frac{\mathbf{p}_{e}}{E_{e}} \cdot \frac{\mathbf{p}_{\overline{\nu}}}{E_{\overline{\nu}}} + \boldsymbol{b} \frac{m_{e}}{E_{e}} + \frac{\langle \mathbf{J} \rangle}{J} \cdot \left[\boldsymbol{A} \frac{\mathbf{p}_{e}}{E_{e}} + \boldsymbol{B} \frac{\mathbf{p}_{\overline{\nu}}}{E_{\overline{\nu}}} + \boldsymbol{D} \frac{\mathbf{p}_{e}}{E_{e}} \times \frac{\mathbf{p}_{\overline{\nu}}}{E_{\overline{\nu}}} \right] \\ + \boldsymbol{\sigma}_{\perp} \cdot \left[\boldsymbol{H} \frac{\mathbf{p}_{\overline{\nu}}}{E_{\overline{\nu}}} + \boldsymbol{L} \frac{\mathbf{p}_{e}}{E_{e}} \times \frac{\mathbf{p}_{\overline{\nu}}}{E_{\overline{\nu}}} + \boldsymbol{N} \frac{\langle \mathbf{J} \rangle}{J} + \boldsymbol{R} \frac{\langle \mathbf{J} \rangle}{J} \times \frac{\mathbf{p}_{e}}{E_{e}} \right] \\ + \boldsymbol{\sigma}_{\perp} \cdot \left[\boldsymbol{S} \frac{\langle \mathbf{J} \rangle}{J} \frac{\mathbf{p}_{e}}{E_{e}} \cdot \frac{\mathbf{p}_{\overline{\nu}}}{E_{\overline{\nu}}} + \boldsymbol{U} \frac{\mathbf{p}_{\overline{\nu}}}{E_{\overline{\nu}}} \frac{\langle \mathbf{J} \rangle}{J} \cdot \frac{\mathbf{p}_{e}}{E_{e}} + \boldsymbol{V} \frac{\mathbf{p}_{\overline{\nu}}}{E_{\overline{\nu}}} \times \frac{\langle \mathbf{J} \rangle}{J} \right]$$

- \mathbf{p}_{e} electron momentum \mathbf{p}_{v} neutrino momentum σ electron spin projection direction
- □ All correlation coefficients can be expressed as **combinations** of real and imaginary parts of exotic (**scalar** and **tensor**) couplings:

$$X = X_{V-A} + X_{FSI} + c_{ReS} \operatorname{Re} S + c_{ReT} \operatorname{Re} T + c_{ImS} \operatorname{Im} S + c_{ImT} \operatorname{Im} T$$

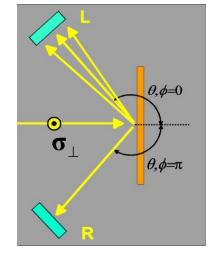
 $\mathbf{S} = \frac{C_s + C_s'}{C_v}, \quad \mathbf{T} = \frac{C_T + C_T'}{C_A}, \quad c_{\text{Re}S}, c_{\text{Re}T}, c_{\text{Im}S}, c_{\text{Im}T} - \text{functions of } \lambda = C_A/C_v \text{ and kinematical quantities}$

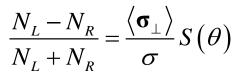
Neutron β -decay correlations at ESS

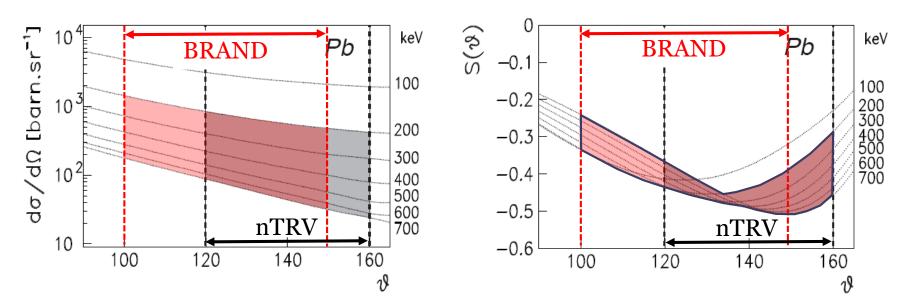
	Proposed experiment	Measurement	Quantity	Last measured	Current value / limit	Statistical uncertainty (1σ) @ANNI [100 days]
		$n \to p + e + \bar{\nu}_e$				
	ep/n	Α	Beta asymmetry	Регкео III@PF1B 2019 [255]	$-0.11985 \pm 0.00017 \pm 0.00012$	1×10^{-5}
	ep/n	С	Proton asymmetry	Perkeo II@PF1B 2008 [292]	$-0.2377 \pm 0.0010 \pm 0.0024$	1×10^{-4}
	ep/n	а	$e - \bar{v}_e$ correlation from <i>p</i> recoil spectrum	aSPECT@PF1B 2020 [257]	-0.10430 ± 0.00084	1×10^{-4}
	ep/n	Ь	Fierz interference from beta asymmetry	Регкео III@PF1B 2020 [256]	$0.017 \pm 0.020 \pm 0.003$	6×10^{-4}
	CRES	b	Fierz interference from beta spectrum	UCNA@UCN-LANL 2017 [380]	$0.067 \pm 0.005 ^{+0.090}_{-0.061}$	1×10^{-4}
-	BRAND	а	$e - \bar{v}_e$ correlation from $e - p$ correlation	aCORN@NG-C 2021 [297]	$-0.10758 \pm 0.00136 \pm 0.00148$	5×10^{-5}
	BRAND	В	Neutrino asymmetry	Perkeo II@PF1B 2007 [291]	$0.9802 \pm 0.0034 \pm 0.0036$	5×10^{-5}
	BRAND	D	Triple correlation D	emiT@NG-6 2012 [294]	$(-0.94 \pm 1.89 \pm 0.97) \times 10^{-4}$	5×10^{-5}
	BRAND	R	Triple correlation <i>R</i>	nTRV@FUNSPIN [278]	$(4 \pm 12 \pm 5) \times 10^{-3}$	1×10^{-3}
	BRAND	Ν	σ_n - $\sigma_{e,\perp}$ Correlation	nTRV@FUNSPIN [278]	$0.067 \pm 0.011 \pm 0.004$	1×10^{-3}
	BRAND	H, L, S, U, V	Other correlations with $\sigma_{e,\perp}$	unmeasured	unmeasured	1×10^{-3}
_ +						

"Fundamental Physics at the European Spallation Source" - to be published

Sensitivity factors for scalar and tensor couplings (Lee-Yang Lagrangian, no RH neutrinos, leading order, no recoil, point charge, ideal detectors)

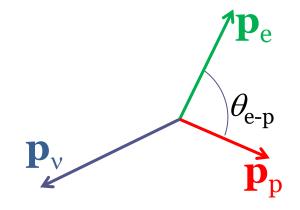

	$SM(\lambda)$	FSI (λ)	c(ReS)	c(Re <i>T</i>)	c(ImS)	c(Im <i>T</i>)
а	-0.1048	0	-0.1714 [†]	0.1714 [†]	-0.0007	+0.0012
b	0	0	+0.1714	+0.8286	0	0
A	-0.1172	0	0	0	-0.0009	+0.0014
B	+0.9876	0	-0.1264	+0.1945	0	0
D	0	0	+0.0009	-0.0009	0	0
Н	+0.0609	0	-0.1714	+0.2762	0	0
L	0	-0.0004	0	0	+0.1714	-0.2762
N	+0.0681	0	-0.2176	+0.3348	0	0
R	0	+0.0005	0	0	-0.2176	+0.3348
S	0	-0.0018	+0.2176	-0.2176	0	0
U	0	0	-0.2176	+0.2176	0	0
V	0	0	0	0	-0.2176	+0.2172

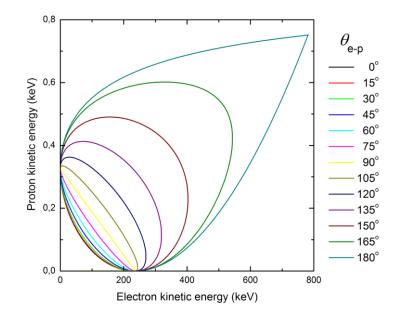

* Kinematical factor averaged over $E_{e}^{kin} \in (200, 782) \text{ keV}, E_{p}^{kin} \in (50, 760) \text{ eV}, \theta_{e} \in (45^{\circ}, 135^{\circ}), \theta_{p} \in (30^{\circ}, 150^{\circ}).$ [†] $(|C_{S}|^{2}+|C'_{S}|^{2})/2$ instead of ReS and $(|C_{T}|^{2}+|C'_{T}|^{2})/2$ instead of ReT, respectively

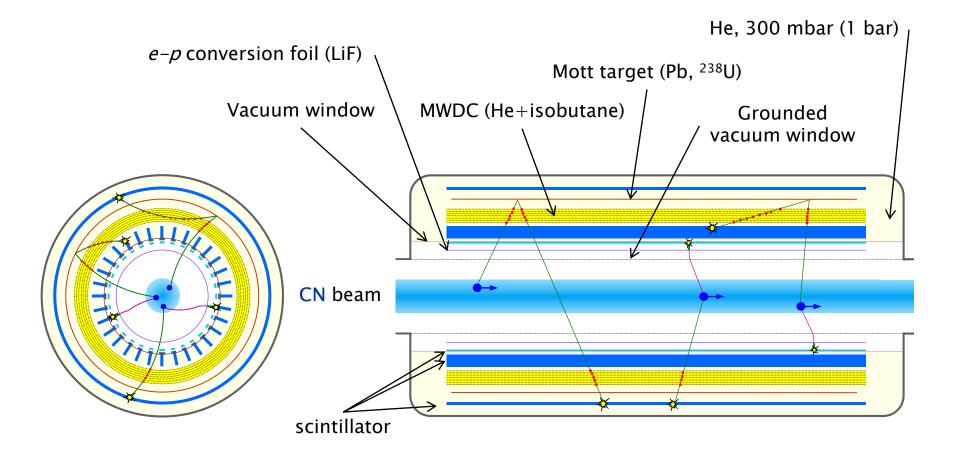

Electron spin analysis

□ Mott scattering:

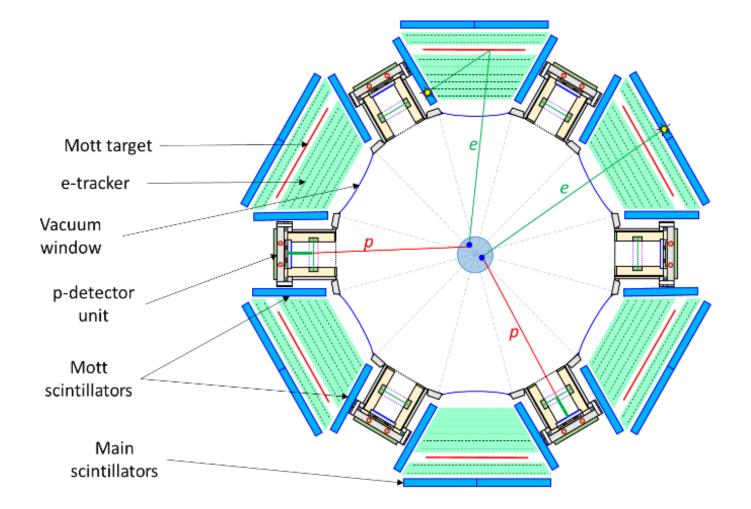
- Analyzing power caused by spin-orbit force
- **P** and **T** conserving (electromagnetic process)
- Sensitive exclusively to the transverse polarization
- Electron polarization can be determined only in well controlled electric and low magnetic fields



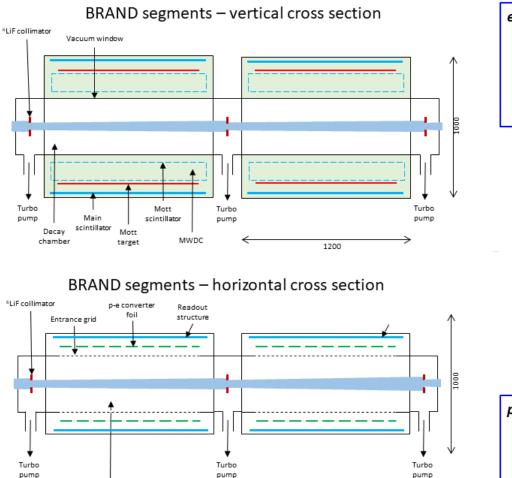



Electron tracking, vertex reconstruction

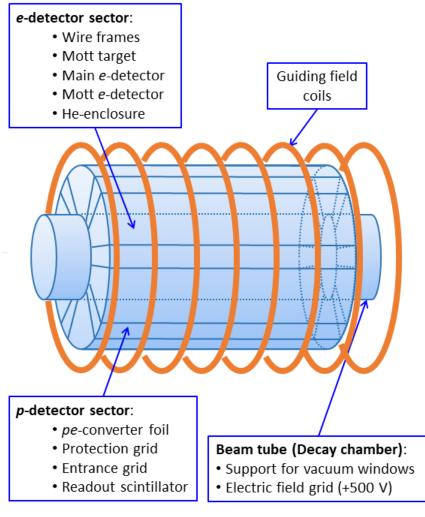
- Unavoidable for electron spin analysis in Mott scattering for diffused and weak decay sources like e.g. cold neutron beam
- Direct measurement of geometry factors (depending on detector acceptance and efficiency)
- Reduces gamma background in electron energy detector
- Allows for implementation of corrections based on parameter maps (e.g. effective Sherman function corrected for target thickness variation and for angle of incidence)
- Allows for accurate gain balance of large plastic scintillators
- Improves diagnostics of beam in fiducial volume



BRAND - concept



BRAND detecting system - modular design



BRAND detecting system - modular design

1200

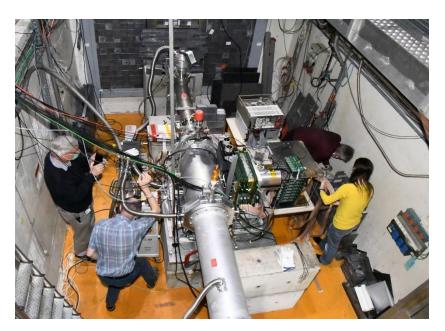
Decay chamber

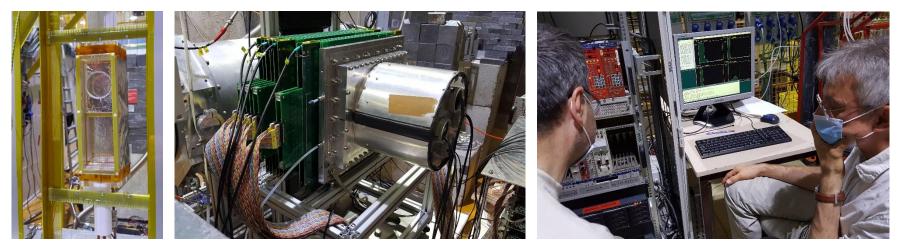
BRAND – methods, expected performance, strategy

13

Experimental methods:

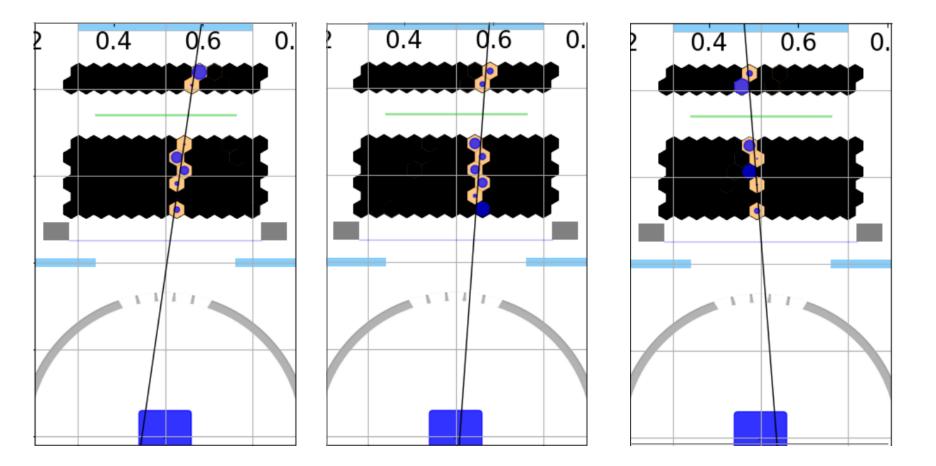
- Measure decay electrons and *e-p* coincidences
- Electron tracking in hexagonal, low *Z*, low pressure MWDC
- *p-e* conversion followed by *e* detection in scintillator (ToF, position)
- Decay vertex reconstruction
- Electron spin analysis by Mott scattering (vertex reconstruction)

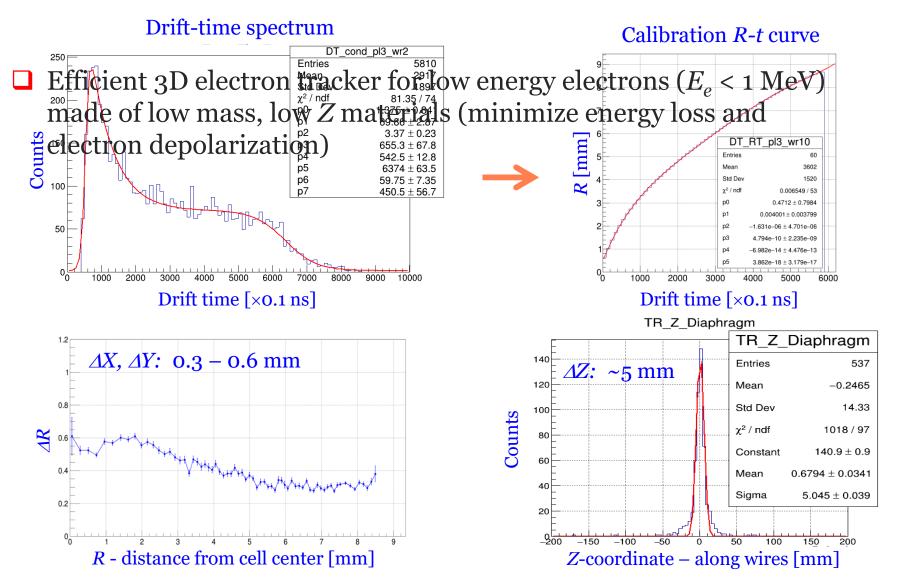

□ BRAND is based on experimentally verified methods (nTRV@PSI)

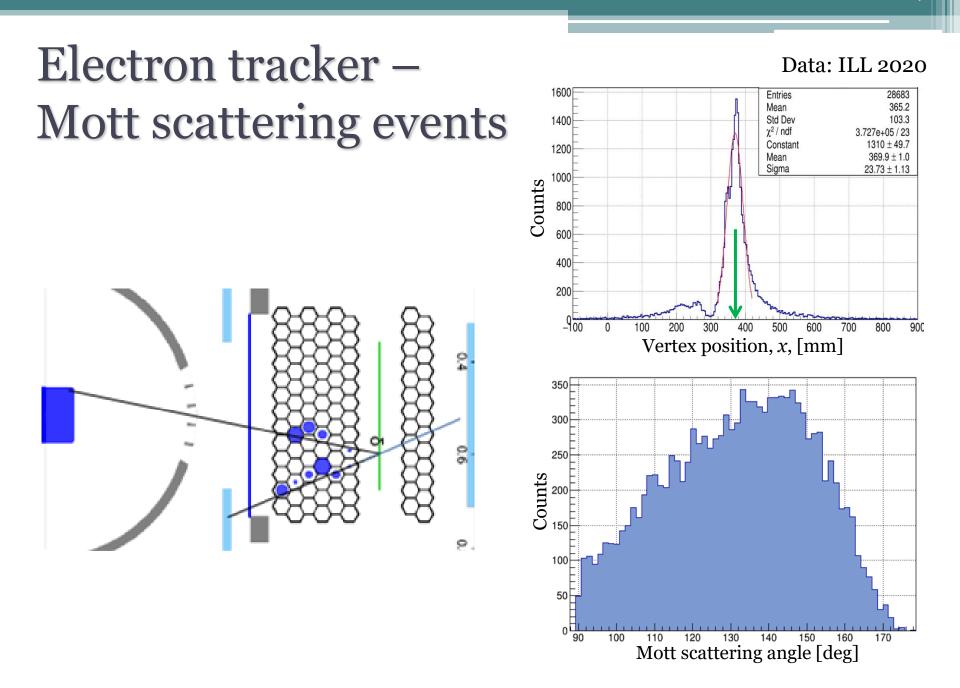

- Overall systematic uncertainty floor achieved in nTRV@PSI:
 - *N* correlation: 4×10^{-3}
 - *R* correlation: 5×10^{-3}

Gradual improvement of exp. accuracy (systematic uncertainty):

BRAND-o test measurement - goals

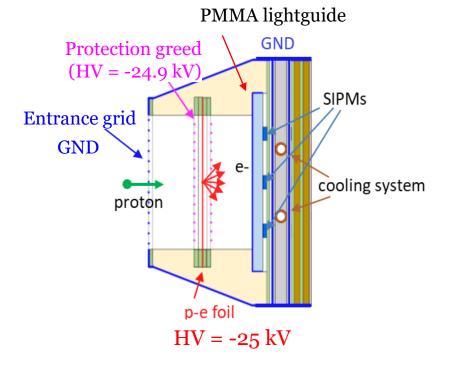

- Electron tracker
- Proton detector
- Front end and DAQ
- Vacuum window
- Beam intensity profile
- Beam induced background


Electron tracker

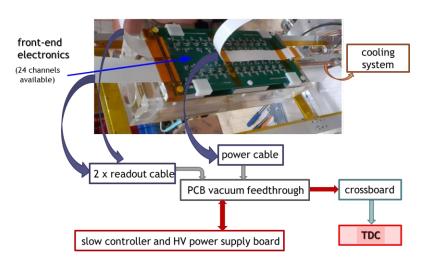

Tracks of decay electrons reconstructed from drift time
 – snapshot of event display

Electron tracker

Data: ILL 2020

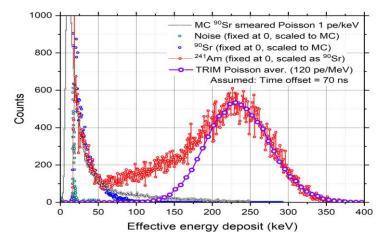


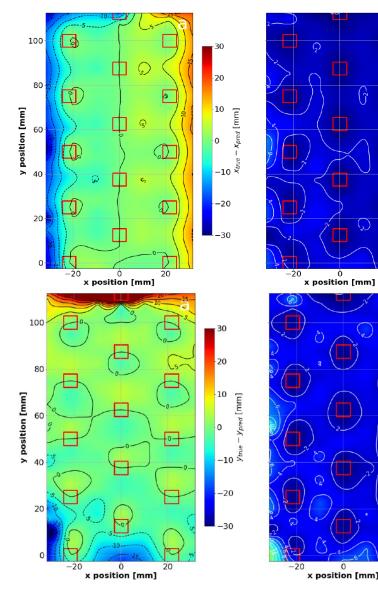
Proton detector

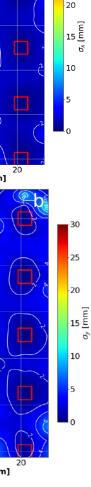

- 25 µm thick plastic scintillator attached to 4 mm thick lightguide
- SIPMs light readout with cooling system

Plastic scintillator with

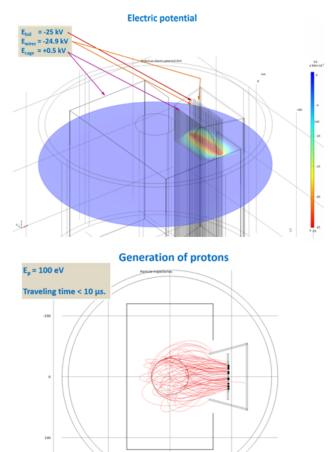
Charge sensitive preamplifiers

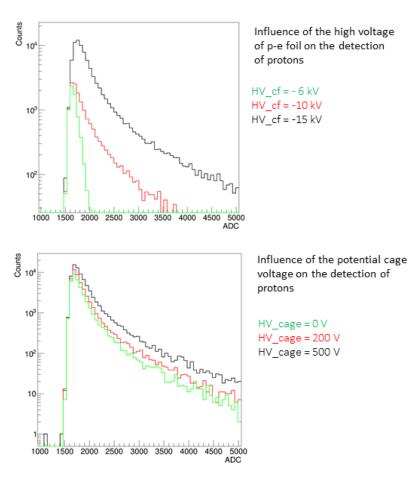



Front-end electronics, slow controller and DAQ connection


Proton detector

- 25 μm thick plastic scintillator attached to 4 mm thick lightguide
- Light readout with temperature stabilized SiPMs
- Charge sensitive preamplifiers with charge-to-time conversion
- □ Gain balance of SiPMs and energy calibration using ²⁴¹Am source
- Hit position reconstructed from light intensity (pulse height) distribution using the centroid method


Hit position resolution Δx , $\Delta y \approx 5$ mm



Proton detector - test with neutron beam

COMSOL simulation of proton transport

Recoil protons registered by prototype detector

Conclusions and prospects

- BRAND project offers exploration of the transverse electron polarization correlation coefficients *R*, *N*, *H*, *L*, *S*, *U*, *V* in neutron β-decay (*H*, *L*, *S*, *U*, *V* were never measured before)
- □ Combined impact of *R*, *N*, *H*, *L*, *S*, *U*, *V* on BSM physics: access to both REAL and IMAGINARY parts of exotic week couplings with completely different systematics than in ep/n experiments
- □ "HE approach": tracking, vertex reconstructrion; measure in low magnetic field to access transverse electron polarization
- □ Simultaneous measurement of "classical" coefficients *a*, *A*, *B* and *D* will provide consistency check and comparison of systematic effects specific to **high** and **low**–magnetic field techniques
- □ Experiment is challenging and not free of risks, however, most of critical techniques were experimentaly verified in pioneering project **nTRV@PSI**
- □ First runs with prototype detectors confirm feasibility of proposed techniques further R&D and tests ongoing
- □ R&D and initial data taking with minimal setup at ILL; Ultimate setup and major data collection at ESS

 $\mathbf{22}$

BRAND Collaboration

□ K. Bodek, G. Gupta, K. Łojek, D. Rozpędzik, J. Zejma Institute of Physics, Jagiellonian University, Krakow, Poland,

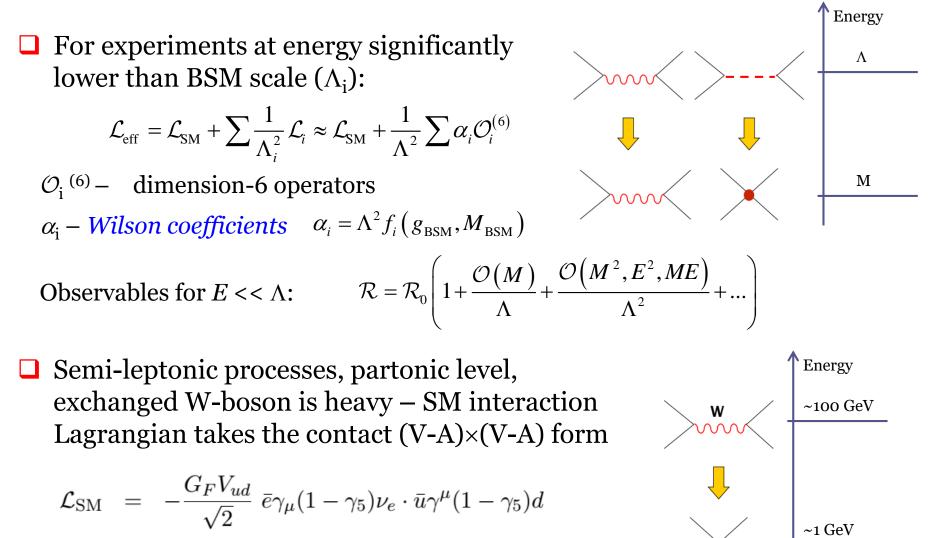
□ K. Dhanmeher, A. Kozela, K. Pysz, B. Włoch Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland,

□ L. De Keukeleere, N. Severijns Institute of Nuclear and Radiation Physics, KU Leuven, Belgium,

T. Soldner

Institut Laue-Langevin, Grenoble, France,

M. Engler, D. Ries, N. Yazdandoost


Department of Chemistry - TRIGA site, Johannes Gutenberg University, Mainz, Germany,

J. Choi, A.R. Young

Department of Physics and Astronomy, North Carolina State University, Raleigh, USA

Backup slides

EFT approach in β-decay

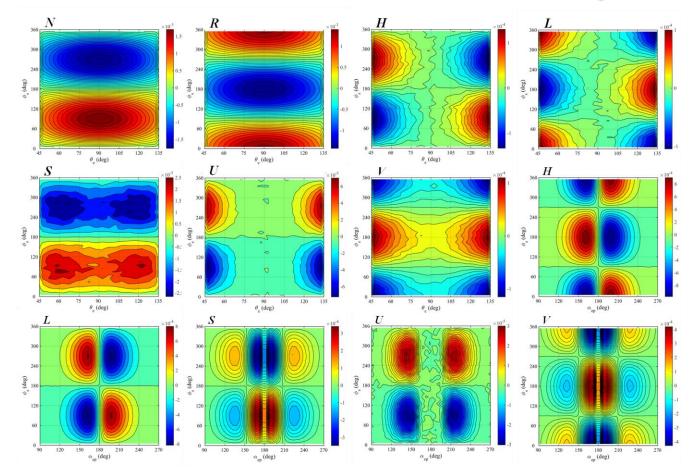
25

Limits from high energy

Electrons and missing transverse energy (MET) channel

```
\sigma(pp \to e + \text{MET} + X)
```

- **□** Underlying partonic process is the same as in β-decay $(\bar{u}d \rightarrow e\bar{\nu})$
- □ If BSM particles are too heavy to be produced on-shell → EFT analysis appropriate
- Express weak scale Lagrangian in terms of EFT parameters and calculate cross section


$$\sigma(m_T > \overline{m}_T) = \sigma_W \Big[\Big| 1 + \epsilon_L^{(v)} \Big|^2 + |\tilde{\epsilon}_L|^2 + |\epsilon_R|^2 \Big] -2 \sigma_{WL} \operatorname{Re} \Big(\epsilon_L^{(c)} + \epsilon_L^{(c)} \epsilon_L^{(v)*} \Big) + \sigma_R \Big[|\tilde{\epsilon}_R|^2 + |\epsilon_L^{(c)}|^2 \Big] + \sigma_S \Big[|\epsilon_S|^2 + |\tilde{\epsilon}_S|^2 + |\epsilon_P|^2 + |\tilde{\epsilon}_P|^2 \Big] + \sigma_T \Big[|\epsilon_T|^2 + |\tilde{\epsilon}_T|^2 \Big]$$

Planning

	BRAND I	BRAND II	BRAND III					
Site	ILL	ILL (ESS ?)	ESS					
Time	3 - 4 years	3 – 4 years	5-6 years					
Pressure	Ambient	Ambient	300 mbar					
Mott target	Pb (Au)	Pb (Au)	Depleted U					
Coverage of azimuthal angle	1/6	Full	Full					
Statistical precision (goal)								
Α	0.0008	0.00008	0.000016					
a, B, D	0.005	0.0005	0.0001					
<i>R</i> , <i>N</i>	0.01	0.001	0.0002					
H, L, S, U, V	0.02	0.002	0.0004					
Systematic errors								
R, N, H, L, S, U, V	0.002	0.001	0.0005					

 $\mathbf{27}$

BRAND – kinematical sensitivity maps

Sensitivity maps for the *N*, *R*, *H*, *L*, *S*, *U* and *V* coefficient as a function of the polar electron angle θ_e or the relative electron-proton angle and the azimuthal spin projection angle ϕ_s (arbitrary units). Irregularities in contours are due to limited statistics in simulations. The kinematical acceptance is defined by: $E_e^{kin} \in (200, 782) \text{ keV}, E_p^{kin} \in (50, 760) \text{ eV}, \theta_e \in (45^\circ, 135^\circ), \theta_p \in (30^\circ, 150^\circ).$

Electron polarization – dominant systematics

Momentum rotation in external electric field

- In uniform field step of 30 kV, incident energy of 100 keV and angle of incidence of 45°, momentum vector rotates by about 12°
- Effect decreases with increasing energy and decreasing angle of incidence
- Effect cancels to 1st order for symmetric barrier or if symmetrically sampled (left-right)

□ "*g*-2 effect"

- 7 mrad per revolution de-synchronization between spin and momentum
- For magnetic field strength <1 mT (guiding field in BRAND)
 can be corrected for
- Electron polarization can be determined only in well controlled electric and low magnetic fields

Electron depolarization by multiple Coulomb scattering

- Dominant contribution from Mott target
- Effective Sherman function MC transport code based on ELSEPA physics input (F. Salvat, et al., Comput. Phys. Comm. 165 (205) 157)

20

Theoretical corrections (SM)

□ Final State Interaction (FSI)

- Exist calculations sufficient for *a*, *b*, *A*, *B*, *D*, *R* and *N* coefficients measurements with accuracy of 10⁻⁴
- For *H*, *L*, *S*, *U* and *V* coefficients FSI correction exist only in lowest order (point charge) approximation

Recoil order corrections (ROC)

- Main contribution from Weak Magnetism
- No **ROC** exist for *H*, *L*, *S*, *U* and *V*

Mott scattering – Sherman function

• Theoretical accuracy on the level 10⁻⁴ is ultimately required

V. Gudkov, et al., Phys. Rev. C 77, 045502 (2008). A.N. Ivanov et al., Phys. Rev. C 95, 055502 (2017). A.N. Ivanov et al., Phys. Rev. C 98, 035503 (2018). M. Gorchtein, priv. communication