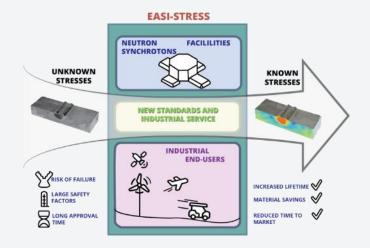
Standardization of industrial residual stress measurement for metallic components

Wen Cui^{1,2}, Ranggi S Ramadhan³, Sandra Cabeza³, Thilo Pirling³ Matthew J Roy² and Philip J Withers¹

¹Henry Royce Institute, Materials Dept.
²Mechanical, Civil and Aerospace Engineering Dept.
University of Manchester, UK
³Institut Max von Laue – Paul Langevin (ILL)

Oct 2022 ESS/ILL User Meeting

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 953219.

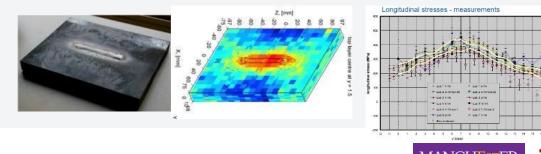

PROJECT INTRODUCTION

EASI-STRESS: European Activity for Standardisation of Industrial residual STRESS characterisation (*easi-stress.eu*)

Aims:

Benchmark synchrotron/neutron technique with more widespread methods for residual stress measurement, to enhance industrial access to beamline facilities.

The University of Manchester


PREVIOUS ROUND ROBIN ACTIVITIES

Versailles Project on Advanced Materials and Standards (VAMAS¹)

- A selection of polycrystalline materials (AI, Ni, ceramic composite, and steel weldment);
- Neutron diffraction only;
- Target: Concerns reliability and reproducibility of neutron diffraction.

Network on Neutron Techniques Standardisation for Structural Integrity (NeT²)

- Destructive & non-destructive, high energy diffraction and lab techniques;
- Experimental against numerical models;
- Structural welds only.
- Target: concerns stress measurement in welded components.

- ¹ www.vamas.org ² www.net.network.eu
- ³ All images from: *MC Smith et al.: Int J Pres Ves Pip, 2018.*

The University of Manchester

FASI-STRESS

EASI-STRESS OBJECTIVES & UNIQUENESS

Benchmark Specimen Design

Interlaboratory comparison

Validation & Benchmark

Guided Industrial access

- Polycrystalline metals ٠
- Industrial relevant ٠
- Represent current metal ٠ processing trend

Large research facilities:

- Neutron diffraction •
- Synchrotron diffraction •

Lab techniques:

- LXRD ٠
- Contour method •
- Hole drilling •
- (Numerical Modelling) ٠

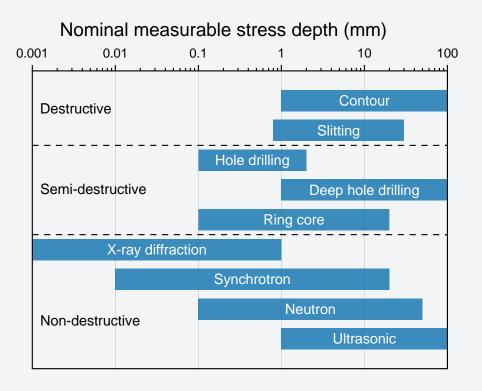
- Protocols
- Data exchange procedures
- **Technical specification**
- Standardisation (ISO, ASTM)



OVERVIEW BENCHMARK SAMPLES

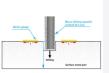
- Well-characterised properties
- Suitable for all technique
- Metal manufacturing industrial relevant

- Represent wide range of stress origins
- Reproducibility



EASI-STRESS standardization of industrial residual stress measurement: benchmark specimen design, W Cui et al. ICRS11 conference, Nancy, March 2022 (submitted)

STRESS MEASUREMENT TECHNIQUE


KEY TECHNIQUE FEATURES

Diffraction technique (XRD, Synchrotron, Neutron)

Destructive technique (Hole drilling, contour)

• Type I stress only

Plastic stress

Reso	lvable	e stre	esses

- Type I, II, III stresses
- Elastic and plastic stresses
- Full stress tensor from single part (S/N)
- High stress resolution (S/N)

Sample & Environment

- Small and large samples, complex geometry
- Struggle with grain size and texture
- Reliable stress-free reference sample needed (S/N)
- In situ environment

- Prefer simple geometry
- No specific requirement on microstructure

Multiple samples for full stress tensors

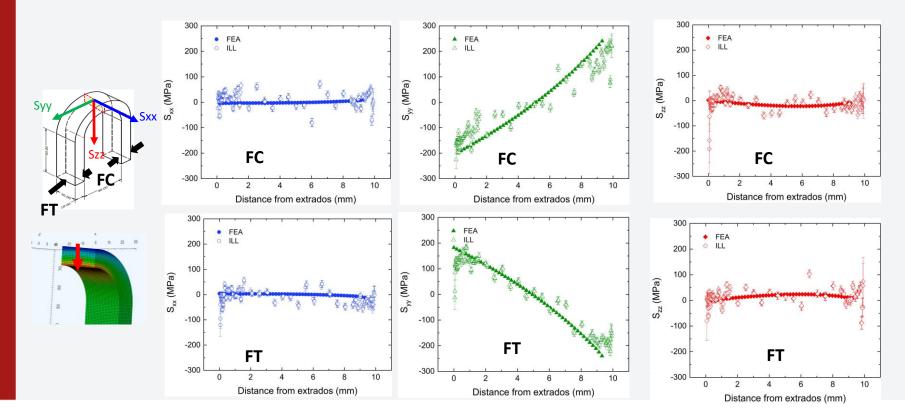
• Highly dependent on cutting quality

Accessibility

- Expensive and less accessible (S/N)
- · High level of expertise needed

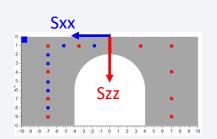
- Easy machine access
- Cost efficient

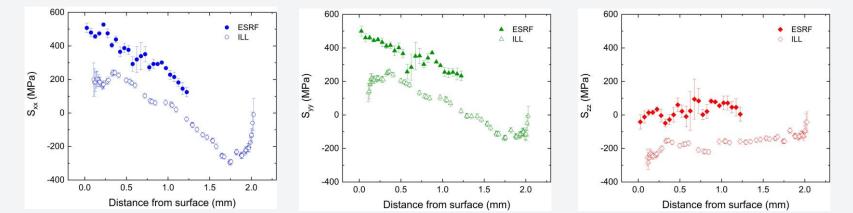
ROUND ROBIN ACTIVITIES


Beamline	Method	Beamline	Method	Beamline	Method	Beamline	Method
ILL	N, SALSA	ILL	N, SALSA	ILL	N, SALSA	Hereon	S, P61A
ECR	N, ATHOS	ESRF	S, ID15A	PSI	N, POLDI	ESRF	S, ID15A
Hereon	S, P61A	Hereon	S, P61A	Hereon	S, P07	ILL by NeT	SALSA
Hereon	S, P07	Hereon	S, P07				
ESRF	S, ID15A	ECR	N, ATHOS				
ANSTO	N, KOWARI						
Lab	Method	Lab	Method	Lab	Method	Lab	Method
UoM	Contour	ου	Contour	UoM	Contour		
UoM	LXRD	UoM	Contour	Cetim	Contour		
UoM	FEA	Cetim	LXRD	Cetim	Hole drilling		
Cetim	LXRD	Cetim	Contour	Nemak	FEA		
Cetim	Contour	Cetim	Hole drilling	Nemak			
Cetim	Hole drilling	VE/AM	FEA				
EDF	LXRD	VE/AIVI	FLA				
DTI	LXRD						

•

PRELIMINARY RESULTS


EASI-STRESS



PRELIMINARY RESULTS

BA-01

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 953219.

