Quantitative measurement of
Boron-10 using TOF transmission

Or - How the most boring

neutron experiment you could
imagine became interesting...

R. Cubitt & C. Boudou
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Neutron Transmission of Absorbing Material

Transmission I/1, = exp(-AL/(A*L*))

where A = neutron wavelength
A* = thermal neutron wavelength at 2200 m/s
L = sample thickness
L = neutron absorption length=1/no
n = number density of absorbing atoms
o = absorption cross section at A*

for boron 10 Transmission = exp(-AA/7.79604)
where A = surface density of B1° (mg/cm?)

Just measure the transmission vs wavelength

and the gradient is a measure of the density of absorbing
material
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The Problem

measured on D33
with TOF
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scattering?
calibration?

reference for
direct beam?

incorrect model?

gradient variation corresponds to a large variation of surface density

exponential fit does not have T =1 at A = 0 which is unphysical
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Modeling with a finite particle size
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The Burrus Model
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SLAB DIVIDED INTO FIVE SUBLAYERS

Transmission for N layers = [Vexp(-2A)+1-V]N

2 is the total absorption cross section of the absorbing particle

V is the probability of encountering a single particle of size A in a layer A thick V=A/(tp)
A is the area density of absorbing particles

p is the B0 density within a single particle

A is the particle size
Number of layers N=t/A

A. Machiels Neutron Transmission Through Boral TM: Impact of
Channeling on Criticality. EPRI, Palo Alto, CA: 2005. 1011819
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Model fitting

Chi2 =1.36
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Only 2 unknowns are the area density and particle size

0.0
Nominal = 1.95 mg/cm? Nominal = 3.93 mg/cm?
Fitted = 1.94 mg/cm? Fitted = 3.87 mg/cm?
Particle = 19.03 um -0.5 Particle = 19.43 um

Chi2=1.30

2 4 6
Wavelength (A)

The model naturallyhasT=1atA=0

The correct gradient is approached for smaller wavelengths

Ln(lransmission)
|
w

Nominal = 7.85 mg/cm?
Fitted = 7.70 mg/cm?

Particle =19.16 um
Chi2=1.01

Wavelength (4)

A monochromatic cold neutron measurement would yield incorrect results



Results from a range of samples
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Conclusions

With a finite particle size of absorbing material only
a white beam measurement can reveal the true area density

The Burrus method allows not only an accurate measurement of
the area density but the particle size too

Take care with a radiograph of material like this as the variation
in transmission may NOT be a measure of inhomogeneity

Possible applications in soft matter..

We work towards this method becoming a standard operation procedure
(SOP)
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Sample | Nominal Area | Measured Particle
Name | Density, D Area Density, D | size A
(mg/cm?) (mg/cm?) (microns)

3.2 0.0000 0.005(5) -

4.2 1.9500 1.94(1) 19.0(5)
5.2 2.9300 3.05(1) 18.1(4)
6.2 3.9300 3.88(1) 19.4(3)
7.2 3.9200 3.83(1) 20.1(3)
8.2 4.9500 5.00(2) 19.6(5)
9.2 5.9000 6.01(2) 21.4(5)
10.2 7.8500 7.70(1) 19.2(3)
-15% | 3.3400 3.73(1) 28.0(2)
+15% | 4.5100 4.95(1) 25.0(2)




Figure 6. Optical microscopy image of grains (darker areas) which have left the

matrix after sanding. The two bars represent 100 microns.



