

Or - How the most boring neutron experiment you could imagine became interesting...

R. Cubitt & C. Boudou

THE EUROPEAN NEUTRON SOURCE

Neutron Transmission of Absorbing Material

Transmission $I/I_0 = \exp(-\lambda L/(\lambda^* L^*))$

where λ = neutron wavelength λ^* = thermal neutron wavelength at 2200 m/s L = sample thickness L = neutron absorption length=1/no n = number density of absorbing atoms

 σ = absorption cross section at λ^*

for boron 10 Transmission = $exp(-A\lambda/7.79604)$

where $A = surface density of B^{10} (mg/cm^2)$

Just measure the transmission vs wavelength and the gradient is a measure of the density of absorbing material

ILL Fuel element Boral Al/B¹⁰

The Problem

gradient variation corresponds to a large variation of surface density exponential fit does not have T = 1 at λ = 0 which is unphysical

Modeling with a finite particle size

The Burrus Model

Transmission for N layers = $[Vexp(-\Sigma\Delta)+1-V]^N$

$$\begin{split} \Sigma & \text{ is the total absorption cross section of the absorbing particle} \\ V & \text{ is the probability of encountering a single particle of size } \Delta & \text{ in a layer } \Delta & \text{ thick V=A/(tp)} \\ A & \text{ is the area density of absorbing particles} \\ \rho & \text{ is the B}^{10} & \text{ density within a single particle} \\ \Delta & \text{ is the particle size} \\ \text{Number of layers } & \text{N=t/}\Delta \\ \end{split}$$

Model fitting

Only 2 unknowns are the area density and particle size The model naturally has T = 1 at λ = 0 The correct gradient is approached for smaller wavelengths A monochromatic cold neutron measurement would yield incorrect results

Results from a range of samples

Conclusions

With a finite particle size of absorbing material only a white beam measurement can reveal the true area density

The Burrus method allows not only an accurate measurement of the area density but the particle size too

Take care with a radiograph of material like this as the variation in transmission may NOT be a measure of inhomogeneity

Possible applications in soft matter..

We work towards this method becoming a standard operation procedure (SOP)

	Sample	Nominal Area	Measured	Particle
	Name	Density, D	Area Density, D	size Δ
		(mg/cm ²)	(mg/cm ²)	(microns)
	3.2	0.0000	0.005(5)	-
	4.2	1.9500	1.94(1)	19.0(5)
	5.2	2.9300	3.05(1)	18.1(4)
	6.2	3.9300	3.88(1)	19.4(3)
	7.2	3.9200	3.83(1)	20.1(3)
	8.2	4.9500	5.00(2)	19.6(5)
	9.2	5.9000	6.01(2)	21.4(5)
	10.2	7.8500	7.70(1)	19.2(3)
	- 15%	3.3400	3.73(1)	28.0(2)
	+15%	4.5100	4.95(1)	25.0(2)

Figure 6. Optical microscopy image of grains (darker areas) which have left the matrix after sanding. The two bars represent 100 microns.