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Dynamical diffraction theory

Bragg case (Si220, l=2.7 A)

30 1. Einleitung

bei einem Winkel. Die Indizes L und S beziehen sich auf lange oder kurze Schlitze, BGDS
auf die Untergrundzählrate des Versuchsaufbaus. Wie aus der folgenden Tabelle aus [41]
ersichtlich, ergeben sich annähernd idente Zählraten für lange und kurze Schlitze, woraus
sich eine gemessene mittlere Reflektivität von 〈R〉 = 0.999976 ergibt. Dieses Ergebnis ist
in guter Übereinstimmung mit dem berechneten Wert von 0.999952 für λ=1.92 Å.

〈θB〉 NL −NBGDL 〈nBL〉 NS −NBGDS 〈NBS〉 R δR
87.15◦ 0.416 ±0.007 466 0.420±0.007 116 0.999973 ±0.000070
86.10◦ 0.652 ±0.008 340 0.656±0.008 85 0.999976 ±0.000070
85.25◦ 0.896 ±0.010 279 0.900±0.012 70 0.999979 ±0.000085

Zusätzliche Messungen wurden nach dem Schneiden, jedoch noch vor dem Ätzen des Kri-
stalls durchgeführt. Für diesen Fall reduziert sich die Reflektivität signifikant zu 0.9964.
Dies zeigt die Bedeutung des Ätzens, bei dem die durch das Schneiden verursachten Span-
nungen im Kristall behoben werden.

Speicherung von Neutronen innerhalb eines vibrierenden Siliziumkristalls

Einen völlig anderen Weg der Speicherung von Neutronen mit Perfektkristallen gehen
Hock et al in [42]. Ein 10 cm langer Si-Kristall (Ø= 30 mm) wurde in (111)-Geometrie ge-
schnitten8 und mittels zweier Piezokeramikscheiben zu Schwingungen angeregt. Die Eigen-
frequenz des Kristalls wurde mit 44.78 kHz vermessen, was einer Schallgeschwindigkeit von
8956 m/s entspricht. Die Energieverteilung der einfallenden Neutronen wurde mit Hilfe
eines (111) Si-Kristall-Doppler-Drives zwischen $E = ±0.35µeV (Monochromator in Ru-
he) und $E = ±7.4µeV (6 Hz Betrieb) verändert. Es wurden sowohl Neutronenpulse mit
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Abbildung 1.12: Transmittierte Intensität eines rechteckigen Pulses mit einer Pulslänge
$tP (3 ms) % TP (22.3 µs) und einer Energiebreite von $E = ±0.35
µeV. Bei Resonanzanregung wird das Maximum der transmittierten In-
tensität 250 µs später als bei ruhendem Kristall erreicht. Analog erhöht
sich die Intensität am Ende des Pulses für etwa 250 µs.

einer zeitlichen Breite $tP von 5.5 ms sowie 3 ms untersucht, die somit groß gegenüber

8Dieser Kristall verwendet somit die gleiche Wellenlänge λ = 6.2712 Å für Rückstreuung wie VESTA.

l=1.92 A
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Dynamical diffraction theory

Bragg case (Si220, l=2.7 A)

Laue case (Si220, l=2.7 A)

30 1. Einleitung

bei einem Winkel. Die Indizes L und S beziehen sich auf lange oder kurze Schlitze, BGDS
auf die Untergrundzählrate des Versuchsaufbaus. Wie aus der folgenden Tabelle aus [41]
ersichtlich, ergeben sich annähernd idente Zählraten für lange und kurze Schlitze, woraus
sich eine gemessene mittlere Reflektivität von 〈R〉 = 0.999976 ergibt. Dieses Ergebnis ist
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Zusätzliche Messungen wurden nach dem Schneiden, jedoch noch vor dem Ätzen des Kri-
stalls durchgeführt. Für diesen Fall reduziert sich die Reflektivität signifikant zu 0.9964.
Dies zeigt die Bedeutung des Ätzens, bei dem die durch das Schneiden verursachten Span-
nungen im Kristall behoben werden.

Speicherung von Neutronen innerhalb eines vibrierenden Siliziumkristalls

Einen völlig anderen Weg der Speicherung von Neutronen mit Perfektkristallen gehen
Hock et al in [42]. Ein 10 cm langer Si-Kristall (Ø= 30 mm) wurde in (111)-Geometrie ge-
schnitten8 und mittels zweier Piezokeramikscheiben zu Schwingungen angeregt. Die Eigen-
frequenz des Kristalls wurde mit 44.78 kHz vermessen, was einer Schallgeschwindigkeit von
8956 m/s entspricht. Die Energieverteilung der einfallenden Neutronen wurde mit Hilfe
eines (111) Si-Kristall-Doppler-Drives zwischen $E = ±0.35µeV (Monochromator in Ru-
he) und $E = ±7.4µeV (6 Hz Betrieb) verändert. Es wurden sowohl Neutronenpulse mit
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Abbildung 1.12: Transmittierte Intensität eines rechteckigen Pulses mit einer Pulslänge
$tP (3 ms) % TP (22.3 µs) und einer Energiebreite von $E = ±0.35
µeV. Bei Resonanzanregung wird das Maximum der transmittierten In-
tensität 250 µs später als bei ruhendem Kristall erreicht. Analog erhöht
sich die Intensität am Ende des Pulses für etwa 250 µs.

einer zeitlichen Breite $tP von 5.5 ms sowie 3 ms untersucht, die somit groß gegenüber
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• Perfect crystal can achieve very high reflectivity
• Perfect crystals sets very sensitive angular 

correlation (urad)
• Laue-Mode allows 50% beam splitter



Correlations: 𝜆 (𝜃); 𝜆 (𝑡)
𝜆 = 2𝑑!"# sin 𝜃$
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Correlations: 𝜆 (𝜃); 𝜆 (𝑡)
𝜆 = 2𝑑!"# sin 𝜃$

Time of flight: 𝜆 𝑡 =
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Fig. 3. Time-dependent brightness of the ESS cold moderator at a wavelength of 5 Å. For comparison, the source brightness available at the neutron sources ISIS in the UK, SNS
in the US, J-PARC in Japan, and ILL in France are shown for the moderators used for this wavelength. For ISIS, SNS and JPARC, the pulse shapes of more than one moderator are
shown, to illustrate the trade-off between resolution and intensity available there. For ESS, three pulse heights are shown: That corresponding to the TDR moderator design (full
blue), the current design at 5 MW of accelerator power (blue line), and at 2 MW (red line), corresponding to the accelerator power in 2025, at the end of the ESS construction
project.

Fig. 4. Butterfly moderator design. The dark blue colour indicates parahydrogen. The main hydrogen volume is about 24 cm wide. The light blue volumes are water. The proton
beam is incident from the right. Each beamport is oriented to point at the nearest water-hydrogen junction. Cold or thermal spectra can be extracted by tilting the guide system
within the beamport to point at the adjacent hydrogen or water region, respectively. More detail on the moderator optimisation and beam extraction can be found in [2,3]. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

1.4. Instrument selection

As mentioned earlier, a reference suite of 22 instruments was assem-
bled for the TDR in 2013, based on a set of science drivers, identified
at the time, which was used for outlining the technical and scientific
scope of the ESS project, as well as for planning and budget purposes.

All instruments were designed to make optimal use of the unique
design of the ESS neutron source, in order to maximise their scien-
tific output. The high source brightness can be used in a number of
transformative areas:

• Measuring very small amounts of sample, or to probe volumes/
areas of larger, non-uniform samples

• Measuring very quickly, giving access to kinetics on the tens of
ms time scale

• Making parametric studies, covering large volumes of parame-
ter space such as temperature, flow conditions, magnetic field,
pressure, etc.

• Studying weak effects, i.e. small cross-section events requiring
high counting statistics

• Polarised-neutron studies, allowing the separation of coherent,
incoherent and magnetic scattering, again at the expense of beam
intensity

An instrument selection process was set up, consisting of annual com-
petitive proposal rounds. Instrument concepts were developed around
their science case, resulting in instrument proposals being submitted
over three proposal rounds in 2013, 2014 and 2015. In each proposal
round, the submitted proposals were peer-reviewed and ranked in order
of scientific interest that would best serve the future scientific commu-
nity of the ESS. A strategy for early scientific success was formulated
which prioritised instruments falling within the following categories:

• World-class instruments that address the needs of the bulk of the
user community and thus bring in our community and ensure
early high-impact science.

• Instruments that build on the unique strengths of the ESS source,
providing transformative new capabilities.

• Instruments catering to science communities with limited neutron
usage today, but with clear potential to bring large scientific
impact.
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Fig. 1. Pulsing schemes for white-beam instruments at a long-pulse source. (a) Illustrating the ‘‘natural’’ length of an instrument with a pulse-shaping chopper: fully filling the
time frame with the bandwidth transmitted by the pulse-shaping chopper. (b) using three-fold wavelength-frame multiplication to achieve the same objective on an instrument
one-third of the length. Note that an additional chopper has been added to the WFM scheme, in order to avoid contamination of the signal from the unwanted additional openings
of the fast pulse-shaping chopper. This is known as a ‘‘bandwidth’’ or ‘‘frame-overlap’’ chopper.

1.1.2. Flexibility, operability and upgradeability
By choosing a source repetition rate of 14 Hz, the optimum length of

many of the instruments thus comes out to be 160 m. This means that
a single dedicated instrument hall can be built for those instruments
instead of several smaller halls, improving many of the operational
aspects: sample environment and sample preparation labs can be situ-
ated more conveniently with shorter distances to transport samples and
equipment between the instruments and fewer labs required to service
the instruments. It also reduces the cost of the buildings.

Having a common length for many types of instruments will also
allow ESS to plan better, reserving space for expansion of the in-
strument hall for future instruments. In addition, it gives more scope
for instrument upgrades, as the instrument length optimised for the
original instrument is more likely to be optimal for the upgraded
version. This builds in flexibility for the future.

The 160 m instruments will have longer guides than any existing
instruments. A considerable effort has therefore gone into ensuring
that the performance of such very long neutron guides firstly is well
understood and optimised [10–14] and secondly that the building
infrastructure is able to ensure a high stability of the guide supports. For
the majority of their length, these long neutron guides will therefore be
supported by piles which rest on the bedrock below the floor. The piles
are decoupled from the floor on which the guide shielding will rest,
which is less sensitive to movements.

1.1.3. Favouring cold-neutron performance through increased bandwidth
In the analysis of the variation in performance of the straw-man

instrument suite with the time structure, the overall effect averaged
over the suite was largely neutral. This global averaging, however,
concealed some significant deviations from the mean when moving
from 20 Hz and 2 ms to 14 Hz and 2.86 ms.

(a) SANS, reflectometry and spin-echo instruments benefitted from
the increased wavelength range offered by the longer repetition
period. Their performance did not suffer significantly from the
degraded wavelength resolution arising from the correspond-
ingly increased pulse length. 7 of the 22 instruments fell into
this category.

(b) Some instruments made only limited use of the source time
structure. These included fundamental physics and crystal-
monochromator instruments, for which mainly the time-average
flux is important. 2 of the 22 instruments fell into this category.

(c) Instruments such as chopper spectrometers which employ RRM
had a weak preference for shorter repetition periods. They use
RRM to compensate for the fact that their preferred repetition
frequency is much higher than the source frequency. A higher
source frequency would reduce their need for RRM and makes
their data-collection strategy more similar to existing instru-
ments, simplifying their data analysis. 3 of the 22 instruments
fell into this category.

(d) Very high resolution instrument such as backscattering and high-
resolution diffraction also had a preference for shorter repetition
periods. These instruments cut out only a small fraction of the
pulse length to achieve the desired resolution and did not benefit
greatly from the increased wavelength range offered by the
increase in repetition period. 3 of the 22 instruments fell into
this category.

(e) Instruments which employ WFM had a weak preference for a
longer repetition periods, as it removes the need for WFM as
described in the previous section. 7 of the 22 instruments fell
into this category.

The biggest winners were the intrinsically low-resolution instru-
ments in category (a) above. This is consistent with a strategy of
favouring the performance of the cold-neutron instruments, addressing
questions in soft condensed matter and the life sciences. Favouring the
natural strengths of a long-pulse source in this is way will serve to
maximise its scientific impact.

1.1.4. Increasing the plateau region of the neutron pulse
Many of the instruments at the ESS will employ a pulse-shaping

chopper to define the source time structure. When the pulse at the
source is significantly longer than the opening time of the pulse-
shaping chopper, a regular trapezoidal resolution function is obtained
by phasing the chopper to open during the plateau region of the source
pulse. When the source pulse is comparable to the opening of the pulse-
shaping chopper, a less favourable resolution is obtained, as well as a
loss of integrated flux, as illustrated in Fig. 2.

As can be appreciated from these figures, using a chopper to extract
a 2.00 ms wide pulse would result in an even more favourable compar-
ison for the 2.86 ms moderator pulse. For instruments where the shape
of the resolution function is of high importance, their design should be
adapted to use only the flat top of the source pulse.

1.2. Moderator design

A key design feature of the ESS moderator system is the flexibil-
ity allowed by co-locating thermal (water) and cold (parahydrogen)
moderators, so that both are viewable at the entrance window of the
guides serving the instruments. This allows all instruments to freely
choose the spectrum they need by aligning their guide system to point
at the desired source and, if required, employ a bispectral switch
system [13,15,16] to stitch the cold and thermal spectra together, thus
increasing the available bandwidth. This became a design requirement
on the moderator and beam extraction system from an early stage in the
project: to allow each beamport to freely choose its neutron spectrum:
cold, thermal or bispectral, thus maximising the flexibility availability
to instrument designers and hence instrument performance.

The TDR design of the ESS moderators employed volume parahy-
drogen moderators, as pioneered and implemented at J-PARC [17] with
slab-shaped water wings acting as the sources of thermal neutrons. This
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Thermal Neutron Interferometry

Monochromator: perfect single 
crystal Si220 in Bragg
Interferometer: solid Si block, 
Si220, non-dispersive geometry



Thermal Neutron Interferometry

Monochromator: perfect single 
crystal Si220 in Bragg
Interferometer: solid Si block, 
Si220, non-dispersive geometry

?
Main problem:
• limited size

• limited sample
• Limited sensitivity  

• Sensitivity to environement
• limited flexibility



Idea of a split crystal interferometer

direct neutron 
beam



Attempt to build split crystal interferometer
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No interference was achieved -> Project stopped



Loss of coherence?

pattern like moirée fringes. However, this has no influence on the phase and contrast pattern, which
are independent of the intensity.

The big symmetric (”Kaiser”) interferometer showed clear regions of good and bad contrast, Fig.
2. The bad regions are probably the consequence of a crystal damage. This pattern was already
known from previous measurements but could now be obtained much quicker and in higher quality.
The whole measurement took one hour. Before, we used to scan the beam cross section by a 3x3 mm
pin hole which usually took a whole night. Alternatively, we could use our old ”Handmonitor” camera
which had only ⇡20% e�ciency.

Figure 2: Constrast and phase map over the beam cross section using the big symmetric (”Kaiser”)
interferometer. The x and y coordinates denote the pixel number with a pixel size of 1 mm.

Figure 3: Interferograms for selected pixels of Fig. 2 showing the count rates per pixel (1mm2) and
per 100s.

Fig. 4 and 5 show phase maps of other interferometer crystals. Each crystal has its own particular
pattern due to tiny imperfections in the geometry like lamella thicknesses and distances. Fig. 5 was
taken with only 10 minutes total measurement time and the statistics per point is really poor, cf. Fig.
6. Such a quick scan is nevertheless useful to obtain an overview. If the full spatial resolution is not
required, on can also increase the statistics by binning.
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taken with only 10 minutes total measurement time and the statistics per point is really poor, cf. Fig.
6. Such a quick scan is nevertheless useful to obtain an overview. If the full spatial resolution is not
required, on can also increase the statistics by binning.
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pattern like moirée fringes. However, this has no influence on the phase and contrast pattern, which
are independent of the intensity.

The big symmetric (”Kaiser”) interferometer showed clear regions of good and bad contrast, Fig.
2. The bad regions are probably the consequence of a crystal damage. This pattern was already
known from previous measurements but could now be obtained much quicker and in higher quality.
The whole measurement took one hour. Before, we used to scan the beam cross section by a 3x3 mm
pin hole which usually took a whole night. Alternatively, we could use our old ”Handmonitor” camera
which had only ⇡20% e�ciency.
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Spatial distribution of phase

Temporal distribution of phase
(neutron is 1 x10-4 s within interferometer)
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Figure 9: At certain frequencies the contrast drops, accompanied by 180�phase steps.
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1.4.1 Resonance at 1 kHz

Fig. 10 shows contrast drop and phase steps around the 1kHz resonance. This overview was measured
in a conventional way, without spatial or temporal resolution. Afterwards we made camera scans for
selected frequencies. Since the data was quite uniform over the beam cross section we don’t show any
spatially resolved data here but only the integral over a 6x6mm central beam part. In the time resolved
data however, Fig. 11, one can see that the contrast for each time slot is fulle preserved. Instead, the
phase varies snychronously with the vibrational oscillation. This is the reason why the time integrated
contrast is reduced. The phase variation increases as the resonance frequency is approached. At some
point the phase is smeared out exactly over 360�. Then the time averaged contrast vanishes completely.
Going on, some contrast comes back, because again a net phase remains. This net phase, however,
is shifted by 180�. (An alternative interpretation would be to assume the same phase but a negative
contrast.) If we approach the resonance frequency from the other side we find the same situation.
The actual resonance frequency, where the phase variation is maximal, is in between the two points
of vanishing contrast. The exact positions of these points depend also on the vibration amplitude and
are therefore to some extend arbitrary.
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Figure 10: Contrast and phase around the 1 kHz resonance.

Figure 11: Contrast (upper row) and phase (lower row) as function of time slot for selected vibration
frequencies. The orange lines indicate the time integrated values.
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Figure 3
The crystal interferometer with separate analyzer lamella (A). The neutron
beam (N) enters from the right side, is split into two paths (1, 2), and exits
through the output ports O and H. Polished surfaces on the crystal’s sides allow
pre-alignment by an optical autocollimator on the front (P) and monitoring the
analyzer’s coordinates (✓, ⇢ and x) by an optical interferometer (M) on the rear.
A piece of cadmium (Cd) can be inserted from the top to block one or the other
interferometer path.

The two crystals sit on silicon supports and are held in po-
sition by thin films of high-viscosity silicon oil. We arranged
them with µm accuracy using a homemade coordinate meas-

uring machine, which was then removed from the setup. Both
crystals have optically polished surfaces on their sides with
identical relative orientation to the lattice planes. To pre-align
the split crystals, we made these surfaces parallel to each other
within one arcsecond using an optical autocollimator. An op-
tical interferometer used the opposite polished surface to mon-
itor the analyzer’s ✓ and ⇢ angles and the x axial position, al-
lowing for a closed-loop operation.

In the forward exit beam we used a multi channel neutron
detector recently developed by the ILL. It is a flat 3He detector
with 90% efficiency and 1 mm spatial resolution achieved by
crossed wire electrodes. Details of this detector type are given
in (Buffet et al., 2017).

A vibration isolated bench supports the monochromator crys-
tal, which is located in a thermal neutron beamline, and the op-
tomechanical mounts of the interferometer. To ensure temperat-
ure stability, the bench is surrounded by two thermal housings.

An aperture in front of the interferometer reduced the beam
size to 1 mm width and 8 mm height, which was the maximum
the interferometer could accept (having been designed for X-
ray operation). A horizontal slit about one meter upstream con-
trolled the vertical divergence. A slit of 2 mm height left a mean
intensity in the two exit beams of 48 counts per second. A 20
mm slit delivered 280 counts per second. We used a neutron
wave length of 0.19 nm which corresponds to a Bragg angle of
30� on our silicon {220} diffracting planes.

Figure 4
Theoretical (a) and observed (b) interference patterns generated during the ⇢ angle alignment. For each ⇢ value a neutron-camera image is horizontally integrated
yielding a vertical intensity distribution which is shown here by each pixel column. Concatenating the columns of all ⇢ values generates the complete image (b).
The theoretical pattern (a) perfectly reproduces the observed one, although the vertical fringes fluctuate in position and spacing due to phase drifts during the
measurement. If the full-beam height is used, interferene can be observed only in the vicinity of perfect ⇢ alignment (c). The bottom figures in (b) and (c) show the
total camera counts. (d) Interferogram created with an auxiliary phase shifter. The red curves are the best sinusoids fitting the data. The fringe visibility is around
40%.
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1 (a). Then the interference signal is extremely sensitive to the
analyzer’s x position, since a movement by one lattice constant
(d ⇡ 0.192 nm) creates a phase shift of 2⇡. Such an interfero-
meter allowed measuring the lattice parameter of 28Si with parts
per billion accuracy (Massa et al., 2011; Massa et al., 2015)
leading to the determination of the Avogadro constant (Fujii
et al., 2018), thereby realizing the kilogram by counting atoms
(Massa et al., 2020).

Alternatively, two pairs of crystal lamellas can be separated,
as shown in Fig. 1 (b). These skew-symmetric split-crystals are
insensitive to misalignments along the x axis and allow the real-
isation of long and spaced interferometer arms, as well as scans
of the arm length and Bragg angle alignment. They were used
for phase-contrast imaging (Yoneyama et al., 2002) profiting
from the extended sensed area and volume. Eventually, an in-
terferometer composed of six separate crystals allowed charac-
terizing the temporal coherence of 10 keV pulses from an X-ray
free-electron laser (Osaka et al., 2017).

This paper reports on the first successful operation of a split-
crystal interferometer using thermal neutrons, showing that all
requirements to build such a device are under control. We use an
existing symmetric split-crystal interferometer, but this proof of
principle demonstration is likewise valid for a skew-symmetric
setup.

2. Alignment Requirements
Neutron interference requires that the relative alignment of the
two crystals fulfills the following conditions.

• ✓, yaw angle, rotation about the vertical axis. This angle
must be adjusted to match the Bragg condition. The observed
triple-Laue rocking curve is shown in Fig. 2. The broad peak
is modulated by Pendellösung fringes which culminate in a
central spike (Petrascheck & Rauch, 1984). While X-ray in-
terference is possible within the whole broad peak, neutron
interference is only possible in the central spike (Mana & Vit-
tone, 1997) which has a full width at half maximum of about
250 nrad.
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Figure 2
Rocking curve of the analyzer lamella with path 1 of the interferometer blocked,
cf. Fig. 3. The error bars lie within the bullets. The theoretical prediction (solid
line) is calculated by convolving the product of three Bragg reflections (the
triple bounce Bragg monochromator) and two Laue reflections (splitter and mir-
ror lamella) with the final Laue reflection by the analyzer.

• ⇢, pitch angle, rotation about the lamella’s surface normal.
This angle must be adjusted to make the interfering beams
parallel. If misaligned, the beams are slightly inclined to each
other and create a horizontal moiré pattern. To make the in-
terference observable, the fringe spacing Lz = d/⇢ must be
greater than the vertical detector resolution, where d = 0.192
nm denotes the spacing of the diffracting {220} planes of the
silicon crystals. The alignment of the ⇢ angle is not trivial be-
cause – contrary to the ✓ angle – its variation hardly changes
the intensity. A smart alignment strategy is described further
below.

•  , roll angle, rotation about the diffracting plane normal. No
accurate adjustment is required. The interferometer is insens-
itive to this misalignment unless it becomes macroscopic.

• x, axial position along the diffracting plane normal. Static-
ally, this degree of freedom is unessential but the noise or
drift during the measurement time must be less than a few
picometers, since a displacement of the analyzer by one dif-
fracting plane creates a full interference period. This applies
only to a symmetric interferometer. In a skew-symmetric lay-
out, all translational degrees of freedom cancel making it the
best choice for a large-scale interferometer.

• y, transverse position along the lamella’s surface normal. To
avoid defocusing, the analyzer-to-mirrors distance must be
equal to the splitter-to-mirrors one to within a few micro-
meters. This applies only to a symmetric interferometer. In
a skew-symmetric layout, the two crystals can be spaced at
will.

• z, vertical position. No adjustment is required.

• The lattice constant of the two crystals must be equal, other-
wise vertical moiré fringes occur, which are spaced by d/✏xx,
where ✏xx = ↵DT is the thermal strain between the crys-
tals. Taking into account the thermal expansion of silicon,
↵ = 2.5 ⇥ 10�6 / K, this means that the temperature dif-
ference DT of the two crystals must be less than 10 mK.

All these parameters must not only be aligned but also kept
constant over a typical measurement time. Alternatively, if a
parameter is drifting but can be monitored, a time-dependent
neutron detection can be used to reconstruct the correct phase.

3. Experimental setup

The setup is depicted in Fig. 3. We used an existing symmet-
ric X-ray interferometer (Ferroglio et al., 2008) manufactured
originally by INRIM to measure the Si lattice parameter. The
splitter and mirror lamellas are monolithically connected while
the analyzer is separate. The lamellas are about 0.73 mm thick
and have a spacing of about 10 mm. The analyzer is mounted
on a piezo-driven tip-tilt platform developed earlier by INRIM
(Bergamin et al., 2003) and upgraded for the need. It allows to
vary both pitch and yaw angle by about ±70 µrad with sub-
nanoradian resolution. A translational piezo stage can vary the
axial position of the analyzer by a few micrometers.
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Figure 3
The crystal interferometer with separate analyzer lamella (A). The neutron
beam (N) enters from the right side, is split into two paths (1, 2), and exits
through the output ports O and H. Polished surfaces on the crystal’s sides allow
pre-alignment by an optical autocollimator on the front (P) and monitoring the
analyzer’s coordinates (✓, ⇢ and x) by an optical interferometer (M) on the rear.
A piece of cadmium (Cd) can be inserted from the top to block one or the other
interferometer path.

The two crystals sit on silicon supports and are held in po-
sition by thin films of high-viscosity silicon oil. We arranged
them with µm accuracy using a homemade coordinate meas-

uring machine, which was then removed from the setup. Both
crystals have optically polished surfaces on their sides with
identical relative orientation to the lattice planes. To pre-align
the split crystals, we made these surfaces parallel to each other
within one arcsecond using an optical autocollimator. An op-
tical interferometer used the opposite polished surface to mon-
itor the analyzer’s ✓ and ⇢ angles and the x axial position, al-
lowing for a closed-loop operation.

In the forward exit beam we used a multi channel neutron
detector recently developed by the ILL. It is a flat 3He detector
with 90% efficiency and 1 mm spatial resolution achieved by
crossed wire electrodes. Details of this detector type are given
in (Buffet et al., 2017).

A vibration isolated bench supports the monochromator crys-
tal, which is located in a thermal neutron beamline, and the op-
tomechanical mounts of the interferometer. To ensure temperat-
ure stability, the bench is surrounded by two thermal housings.

An aperture in front of the interferometer reduced the beam
size to 1 mm width and 8 mm height, which was the maximum
the interferometer could accept (having been designed for X-
ray operation). A horizontal slit about one meter upstream con-
trolled the vertical divergence. A slit of 2 mm height left a mean
intensity in the two exit beams of 48 counts per second. A 20
mm slit delivered 280 counts per second. We used a neutron
wave length of 0.19 nm which corresponds to a Bragg angle of
30� on our silicon {220} diffracting planes.

Figure 4
Theoretical (a) and observed (b) interference patterns generated during the ⇢ angle alignment. For each ⇢ value a neutron-camera image is horizontally integrated
yielding a vertical intensity distribution which is shown here by each pixel column. Concatenating the columns of all ⇢ values generates the complete image (b).
The theoretical pattern (a) perfectly reproduces the observed one, although the vertical fringes fluctuate in position and spacing due to phase drifts during the
measurement. If the full-beam height is used, interferene can be observed only in the vicinity of perfect ⇢ alignment (c). The bottom figures in (b) and (c) show the
total camera counts. (d) Interferogram created with an auxiliary phase shifter. The red curves are the best sinusoids fitting the data. The fringe visibility is around
40%.
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sition by thin films of high-viscosity silicon oil. We arranged
them with µm accuracy using a homemade coordinate meas-

uring machine, which was then removed from the setup. Both
crystals have optically polished surfaces on their sides with
identical relative orientation to the lattice planes. To pre-align
the split crystals, we made these surfaces parallel to each other
within one arcsecond using an optical autocollimator. An op-
tical interferometer used the opposite polished surface to mon-
itor the analyzer’s ✓ and ⇢ angles and the x axial position, al-
lowing for a closed-loop operation.

In the forward exit beam we used a multi channel neutron
detector recently developed by the ILL. It is a flat 3He detector
with 90% efficiency and 1 mm spatial resolution achieved by
crossed wire electrodes. Details of this detector type are given
in (Buffet et al., 2017).

A vibration isolated bench supports the monochromator crys-
tal, which is located in a thermal neutron beamline, and the op-
tomechanical mounts of the interferometer. To ensure temperat-
ure stability, the bench is surrounded by two thermal housings.

An aperture in front of the interferometer reduced the beam
size to 1 mm width and 8 mm height, which was the maximum
the interferometer could accept (having been designed for X-
ray operation). A horizontal slit about one meter upstream con-
trolled the vertical divergence. A slit of 2 mm height left a mean
intensity in the two exit beams of 48 counts per second. A 20
mm slit delivered 280 counts per second. We used a neutron
wave length of 0.19 nm which corresponds to a Bragg angle of
30� on our silicon {220} diffracting planes.
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Theoretical (a) and observed (b) interference patterns generated during the ⇢ angle alignment. For each ⇢ value a neutron-camera image is horizontally integrated
yielding a vertical intensity distribution which is shown here by each pixel column. Concatenating the columns of all ⇢ values generates the complete image (b).
The theoretical pattern (a) perfectly reproduces the observed one, although the vertical fringes fluctuate in position and spacing due to phase drifts during the
measurement. If the full-beam height is used, interferene can be observed only in the vicinity of perfect ⇢ alignment (c). The bottom figures in (b) and (c) show the
total camera counts. (d) Interferogram created with an auxiliary phase shifter. The red curves are the best sinusoids fitting the data. The fringe visibility is around
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How to get to nrad with neutrons?

showOHx!filename", x1", x2"# :$ Module!%data, rho, ODet, HDet, dataO, dataH, p1, p2&,

data $ loaddatfile !StringSplit!filename, ","#!!1##, 1, '1#;

rho $ Transpose!data#!!2##;

ODet $ Transpose!data#!!4##;

HDet $ Transpose!data#!!5##;

p1 $ Position!rho, Nearest!rho, x1, 1#!!1###!!1, 1##;
p2 $ Position!rho, Nearest!rho, x2, 1#!!1###!!1, 1##;

dataO $ %rho!!p1 ;; p2##, ODet!!p1 ;; p2##&;

dataH $ %rho!!p1 ;; p2##, HDet!!p1 ;; p2##&;

ListPlot!%Transpose!dataO#, Transpose!dataH#&, PlotLabel ( filename, Joined ( True, ImageSize ( 1000, PlotMarkers ( %Automatic, 15&, AspectRatio ( 0.2#
#

showOH!"scanFFT"14Sep1123.dat", 0, 0#
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#140000 #138000 #136000 #134000 #132000 #130000 #128000

50

100

150

200

scanFFT$14Sep1123.dat

no $ 2; p1 $ 1; p2 $ Length!ODet!!no###

peakdataO $ %rho!!no, p1 ;; p2##, ODet!!no, p1 ;; p2##&;

peakdataH $ %rho!!no, p1 ;; p2##, HDet!!no, p1 ;; p2##&;

datfilelist!!no##
ListPlot!%Transpose!peakdataO#, Transpose!peakdataH#&, Joined ( True, PlotMarkers ( %Automatic, 15&, AspectRatio ( 0.2#

showFFT!"scanFFT"14Sep1043.dat"#

scanFFT!14Sep1043.dat

#129000 #128000 #127000 #126000 #125000 #124000 #123000 #122000 #121000 #120000 #119000 #118000

20000

40000

60000

80000

100000

120000 1

2

3
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5
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7

8

2     scanFFTanalysis.nb

showOHx!filename", x1", x2"# :$ Module!%data, rho, ODet, HDet, dataO, dataH, p1, p2&,

data $ loaddatfile !StringSplit!filename, ","#!!1##, 1, '1#;

rho $ Transpose!data#!!2##;

ODet $ Transpose!data#!!4##;

HDet $ Transpose!data#!!5##;

p1 $ Position!rho, Nearest!rho, x1, 1#!!1###!!1, 1##;
p2 $ Position!rho, Nearest!rho, x2, 1#!!1###!!1, 1##;

dataO $ %rho!!p1 ;; p2##, ODet!!p1 ;; p2##&;

dataH $ %rho!!p1 ;; p2##, HDet!!p1 ;; p2##&;

ListPlot!%Transpose!dataO#, Transpose!dataH#&, PlotLabel ( filename, Joined ( True, ImageSize ( 1000, PlotMarkers ( %Automatic, 15&, AspectRatio ( 0.2#
#

showOH!"scanFFT"14Sep1123.dat", 0, 0#
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#140000 #138000 #136000 #134000 #132000 #130000 #128000

50
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scanFFT$14Sep1123.dat

no $ 2; p1 $ 1; p2 $ Length!ODet!!no###

peakdataO $ %rho!!no, p1 ;; p2##, ODet!!no, p1 ;; p2##&;

peakdataH $ %rho!!no, p1 ;; p2##, HDet!!no, p1 ;; p2##&;

datfilelist!!no##
ListPlot!%Transpose!peakdataO#, Transpose!peakdataH#&, Joined ( True, PlotMarkers ( %Automatic, 15&, AspectRatio ( 0.2#

showFFT!"scanFFT"14Sep1043.dat"#

scanFFT!14Sep1043.dat
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2     scanFFTanalysis.nb

showFFT!"scanFFT"20Sep1003.dat"#

scanFFT!20Sep1003.dat
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showOHx!"scanFFT"20Sep1003.dat", $113 000, $111 500#
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showFFT!"scanFFT"20Sep1003.dat"#
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no coherence C(t) Poisson distributed -> noise in FFT
interference -> Peak in FFT
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FIG. 4. Theoretical (a) and observed (b) interference fringes during ⇢ alignment. For each ⇢ value a neutron camera image
was horizontally integrated yielding the vertical intensity distribution shown here. Horizontal moiré fringes disappear (c) if the
full source size is used. The bottom parts of (b) and (c) show the integral counts. (d) Interferogram created with an auxiliary
phase shifter. A fringe visibility around 40% was achieved.

Experimental setup. The setup is depicted in Fig. 3.
We used an existing symmetric X-ray interferometer de-
veloped by INRIM [23]. The first two crystal lamellas
were monolithically connected while the third lamella was
separate. The lamellas were about 0.73 mm thick and
had a spacing of about 10 mm. The third lamella was
mounted on a piezo driven tip-tilt platform [24] which
allowed to vary both angles by ±15µrad. A translational
piezo stage allowed to vary x by ± ... nm. The crystals
sat on a silicon support and was held in position by a thin
film of high-viscosity silicon oil. The two crystals were
arranged with µm accuracy using a home-made coordi-
nate measuring machine, which was then removed from
the setup. Both crystals had optically polished surfaces
on their sides with identical relative orientation to the
lattice planes. Using an optical autocollimator we could
make these surfaces parallel to each other to within one
arcsecond. The opposite polished surface was used by
an optical interferometer to monitor ✓, ⇢ and x allowing
for a closed loop operation. In the forward exit beam we
used a multi channel neutron detector recently developed
by the ILL. It is a flat 3He detector with 90% efficiency
and 1 mm spatial resolution achieved by crossed wire
electrodes. Details of this detector type are described in
[25]. An aperture in front of the interferometer was used
to reduce the beam size to 1 mm width and 8 mm height,
which was the maximum the interferometer could accept
(having been designed for X-ray operation). A horizon-
tal slit about one meter upstream was used to control

the vertical divergence. A slit of 2 mm height left a total
intensity in the two exit beams of 48 counts per second.
A 20 mm slit delivered 280 cps. We used a neutron wave
length of 0.19 nm where our neutron beam had the high-
est intensity. It corresponds to a Bragg angle of 30� on
our 220 silicon crystals.

Results. Fig. 4(b) shows the interference pattern ob-
served during a ⇢ alignment scan. For this plot, the de-
tector images have been integrated horizontally, leaving
one pixel column per ⇢ value. The pattern consists of
two effects. First, horizontal moiré fringes develop if ⇢ is
misaligned, because the two interfering beams are verti-
cally inclined to each other. As ⇢ = 0 is approached, the
fringe spacing becomes larger and larger until the phase
is uniform over the whole beam height. For two interfer-
ing plane waves the fringe spacing is given by ⇤z = d/⇢
with the lattice spacing d. For a divergent beam created
by a point source this spacing is magnified by the factor
lD/l⇢ (amounting to 1.55 in our case) where lD denotes
the distance between source and detector and l⇢ the dis-
tance between source and the third lamella which creates
the ⇢ tilt. The second effect is given by the fact that the
center of ⇢ rotation was z0 = 38 mm below the neutron
beam. Therefore each change in the ⇢ tilt also creates
a displacement along x causing a phase shift which is
visible as vertical fringes in our plot. Combining both
effects we expect the pattern cos(⇢(z�z0)2⇡/d · l⇢/lD)
which is plotted in Fig. 4(a). The observed pattern (b)
is in excellent agreement, taking into account that the



Project combined Optical, X-ray and Neutron 
interferometry
• Probing different interactions, different time scales, 

different length scales within one device
• X-rays: 108 m/s, electromagnetic interaction (local 

electron density), wavelength 10-10m
• Neutrons: 103 m/s, strong interaction, spin, wavelength 

10-10m
• Light: 108 m/s, electromagnetic interaction (integrated 

electron density), wavelength 10-7 m

• ESS: interesting source for Neutron interferometry
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Fig. 1. Pulsing schemes for white-beam instruments at a long-pulse source. (a) Illustrating the ‘‘natural’’ length of an instrument with a pulse-shaping chopper: fully filling the
time frame with the bandwidth transmitted by the pulse-shaping chopper. (b) using three-fold wavelength-frame multiplication to achieve the same objective on an instrument
one-third of the length. Note that an additional chopper has been added to the WFM scheme, in order to avoid contamination of the signal from the unwanted additional openings
of the fast pulse-shaping chopper. This is known as a ‘‘bandwidth’’ or ‘‘frame-overlap’’ chopper.

1.1.2. Flexibility, operability and upgradeability
By choosing a source repetition rate of 14 Hz, the optimum length of

many of the instruments thus comes out to be 160 m. This means that
a single dedicated instrument hall can be built for those instruments
instead of several smaller halls, improving many of the operational
aspects: sample environment and sample preparation labs can be situ-
ated more conveniently with shorter distances to transport samples and
equipment between the instruments and fewer labs required to service
the instruments. It also reduces the cost of the buildings.

Having a common length for many types of instruments will also
allow ESS to plan better, reserving space for expansion of the in-
strument hall for future instruments. In addition, it gives more scope
for instrument upgrades, as the instrument length optimised for the
original instrument is more likely to be optimal for the upgraded
version. This builds in flexibility for the future.

The 160 m instruments will have longer guides than any existing
instruments. A considerable effort has therefore gone into ensuring
that the performance of such very long neutron guides firstly is well
understood and optimised [10–14] and secondly that the building
infrastructure is able to ensure a high stability of the guide supports. For
the majority of their length, these long neutron guides will therefore be
supported by piles which rest on the bedrock below the floor. The piles
are decoupled from the floor on which the guide shielding will rest,
which is less sensitive to movements.

1.1.3. Favouring cold-neutron performance through increased bandwidth
In the analysis of the variation in performance of the straw-man

instrument suite with the time structure, the overall effect averaged
over the suite was largely neutral. This global averaging, however,
concealed some significant deviations from the mean when moving
from 20 Hz and 2 ms to 14 Hz and 2.86 ms.

(a) SANS, reflectometry and spin-echo instruments benefitted from
the increased wavelength range offered by the longer repetition
period. Their performance did not suffer significantly from the
degraded wavelength resolution arising from the correspond-
ingly increased pulse length. 7 of the 22 instruments fell into
this category.

(b) Some instruments made only limited use of the source time
structure. These included fundamental physics and crystal-
monochromator instruments, for which mainly the time-average
flux is important. 2 of the 22 instruments fell into this category.

(c) Instruments such as chopper spectrometers which employ RRM
had a weak preference for shorter repetition periods. They use
RRM to compensate for the fact that their preferred repetition
frequency is much higher than the source frequency. A higher
source frequency would reduce their need for RRM and makes
their data-collection strategy more similar to existing instru-
ments, simplifying their data analysis. 3 of the 22 instruments
fell into this category.

(d) Very high resolution instrument such as backscattering and high-
resolution diffraction also had a preference for shorter repetition
periods. These instruments cut out only a small fraction of the
pulse length to achieve the desired resolution and did not benefit
greatly from the increased wavelength range offered by the
increase in repetition period. 3 of the 22 instruments fell into
this category.

(e) Instruments which employ WFM had a weak preference for a
longer repetition periods, as it removes the need for WFM as
described in the previous section. 7 of the 22 instruments fell
into this category.

The biggest winners were the intrinsically low-resolution instru-
ments in category (a) above. This is consistent with a strategy of
favouring the performance of the cold-neutron instruments, addressing
questions in soft condensed matter and the life sciences. Favouring the
natural strengths of a long-pulse source in this is way will serve to
maximise its scientific impact.

1.1.4. Increasing the plateau region of the neutron pulse
Many of the instruments at the ESS will employ a pulse-shaping

chopper to define the source time structure. When the pulse at the
source is significantly longer than the opening time of the pulse-
shaping chopper, a regular trapezoidal resolution function is obtained
by phasing the chopper to open during the plateau region of the source
pulse. When the source pulse is comparable to the opening of the pulse-
shaping chopper, a less favourable resolution is obtained, as well as a
loss of integrated flux, as illustrated in Fig. 2.

As can be appreciated from these figures, using a chopper to extract
a 2.00 ms wide pulse would result in an even more favourable compar-
ison for the 2.86 ms moderator pulse. For instruments where the shape
of the resolution function is of high importance, their design should be
adapted to use only the flat top of the source pulse.

1.2. Moderator design

A key design feature of the ESS moderator system is the flexibil-
ity allowed by co-locating thermal (water) and cold (parahydrogen)
moderators, so that both are viewable at the entrance window of the
guides serving the instruments. This allows all instruments to freely
choose the spectrum they need by aligning their guide system to point
at the desired source and, if required, employ a bispectral switch
system [13,15,16] to stitch the cold and thermal spectra together, thus
increasing the available bandwidth. This became a design requirement
on the moderator and beam extraction system from an early stage in the
project: to allow each beamport to freely choose its neutron spectrum:
cold, thermal or bispectral, thus maximising the flexibility availability
to instrument designers and hence instrument performance.

The TDR design of the ESS moderators employed volume parahy-
drogen moderators, as pioneered and implemented at J-PARC [17] with
slab-shaped water wings acting as the sources of thermal neutrons. This
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Fig. 2. Double crystal experimental layout (top view): 1 – neutron beam; 2 – con-
crete hutch; 3 – double-crystal monochromator; 4 – translation stage for the crys-
tals including a rotation stage; 5 – two silicon single crystals; 6 – collimating (S1, 
S2) and scanning (S3) slits; 7 – thermostat; 8 – detector; 9 – detector shielding; 10 
– beam dump.

variable magnetic fields [17,18] and in an accelerating crystal [19]. 
Also there are interesting studies of the Schwinger (spin-orbit) 
interaction of the neutron with interplanar electric fields in cen-
trosymmetric [20,21] and non-centrosymmetric crystal [7,9,22–24]
in diffraction and also of its application to control neutron polar-
ization at Laue diffraction in the perfect slightly deformed crystal 
with controlled deformation using a small temperature gradient 
[25].

The effect of diffractive amplification has been directly mea-
sured by Zeilinger et al. [15], with using neutron beam deflec-
tion in inhomogeneous magnetic field. The deflection was more 
105 times (actually 2.1 · 105) larger than in the same fields in 
free space. The authors [15] have obtained the splitting of non-
polarized beam into two also non-polarized beams in contrast to 
the present work. In this paper, we exploit two additional factors 
related to the use of large Bragg angles and large crystal sizes.

First, there is another gain associated with large diffraction an-
gles close to 90◦ , which is proportional to tan2 θB. Its existence is 
based on the fact that diffraction is not governed by the neutrons 
total velocity vn , but its projection onto the crystallographic planes 
v || = vn cos θB [26,27]. When the diffraction angle is increased the 
time spent by the neutron inside the crystal, is growing propor-
tional to tan θB [28]. This gives a new additional amplification 
scheme for measuring forces weakly interacting with the diffract-
ing neutron.

Secondly, for thick crystals and large Bragg angles, due to in-
creasing the time spent by the neutron inside the crystal, effective 
path of neutron in the crystal increases significantly too, so the 
effect of abnormal absorption (Borman effect) becomes very pro-
nounced. It was measured [4] for used silicon crystal and results 
in that only neutrons in the weakly absorbed state survive in con-
trast to ref. [15]. Therefore, the corresponding Kato trajectory splits 
only due to two opposite forces acting on neutrons with oppo-
site spin orientations (Fig. 2), so that the spatial separation of the 
spins occurs, as in the Stern-Gerlach effect, but significantly larger 
in magnitude.

The present experiment is particularly focusing on demonstrat-
ing the extraordinary sensitivity with respect to external forces 
acting on the neutron inside the crystal. The force F w , necessary to 
displace the neutron beam at the exit of the second crystal (in the 
case of three collimating slits and the equal distance L between 
them) by a distance equal to the slit width δs , is [29]

Fig. 3. Schematic view on probing silicon crystal and magnetic field guide: a – prob-
ing silicon crystal, b – rotation stage (also part of field guide), c – neutron beam exit 
area, d – permanent magnets, e – magnetic field guide, f – piezomotor positioner 
of exit slit S3 (slit is not shown).

F w = m0d

π tan2 θB
· 2En

L2 · δs ≡ 1
Ke

· 2En

L2 · δs, (12)

where Ke – is the total coefficient of diffractive amplification, 
(2Enδs)/L2 – the force, perpendicular to the direction of motion 
of the neutron and necessary for a displacement of δs in vacuum, 
m0 ≡ 2F gd/V – the “Kato mass”, V – the crystals unit cell volume, 
F g – the neutron scattering structure amplitude for the crystals 
unit cell, En – the neutron energy, L – the thickness of one crystal.

For the (220) planes of silicon with an interplane distance of 
d = 1.92 Å, as used in the present experiment and for m0 = 774.4
cm−1, the diffractive amplification coefficient becomes

K (220)
e = π tan2 θB

m0d
= 2.1 · 105 · tan2 θB (13)

which predicts a value of K (220)
e = 1.1 · 107 for a maximum Bragg 

angle of 82◦ in the experiment.

4. The setup

The experiment was carried out in 2018 at the PF1b cold neu-
tron beam facility [30] of the Institut Laue-Langevin, Grenoble, 
France. A schematic view of the experiment was shown above 
in Fig. 2. At the beginning the beam of nonpolarized cold neu-
trons (1) is passing onto the monochromator (3), which is shielded 
by a concrete hutch (2). The monochromator, apart from select-
ing a wave length and divergence diapason, is also lowering the 
neutron flux falling onto the actual silicon crystal (5). This also 
decreases the ambient background substantially. The monochro-
mator is mounted on a rotation stage and consists of two crystals 
of pyrolitic graphite (PG) having the (002) planes (dPG = 3.35 Å) 
oriented to the parallel-opposite crystal faces. The reflected wave 
length can be tuned via the rotation stage within a range of 
λ = (3.5 − 3.9) Å. The mosaicity of the crystals is ∼ 0.9◦ , which 
allows to achieve a monochromaticity of %λ/λ ∼ 10−2.

The neutron beam from the monochromator is impinging the 
entry face of the probing silicon crystal (5) having dimensions of 
130 mm × 130 mm × 218 mm. In the experiment the (220) 
diffraction planes with an interplane spacing of d = 1.92 Å were 
used.

The maximum variation of the interplanar spacing %d/d over 
the entire crystal volume should be no more than ∼ 10−7 to ob-
serve the effect. Larger gradients of interplanar distance will lead 
to additional Kato forces, acting in the same directions and with 
the comparable value as the magnetic gradients, and so to the 
broadening of the Kato trajectories and the intensity distribution 
profiles on the output face of the crystal, to a decrease in inten-
sity and the disappearance of the effect. To obtain a double crystal 
geometry the silicon crystal has a cut with a depth of 72 mm and 
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The waves ψ (1) and ψ (2) are two orthogonal superpositions of 
the direct wave with the wavevector k and the wave with the 
wavevector k + g reflected from crystallographic planes:

ψ (1)(r) = cosγ eik(1)r + sinγ ei[k(1)+g]r, (3)

ψ (2)(r) = − sinγ eik(2)r + cosγ ei[k(2)+g]r. (4)

Here

tan 2γ =
U N

g

#g
≡ 1

w g
, (5)

where

U N
g =

2mV N
g

h̄2 (6)

and

#g = (k + g)2 − k2

2
= 2kg + g2

2
. (7)

The dimensional (#g ) and dimensionless (w g ) parameters describe 
a deviation from the Bragg condition.

The wavevectors k(1) and k(2) belong to different branches of 
the dispersion surface, which is specified by the equation
(

k(1,2)
)2

= K 2 − #g ∓
√

#2
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(
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g
)2

. (8)

Here, K 2 = k2
e (1 − V N

0 ) is the length squared of the wavevector of 
the neutron incident on the crystal taking into account the average 
refractive index of the crystal, where ke is the wavevector of the 
neutron in vacuum. For cos2 γ in Eqs. (3) and (4), we have
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Under the exact Bragg condition (w g = 0), ψ (1) and ψ (2) are the 
symmetric and antisymmetric combinations of the direct and re-
flected waves, respectively. They propagate along crystallographic 
planes (in the direction k|| = k + g/2, see Fig. 1) with the velocity 
v || = v cos θB . Neutrons in the states ψ (1) and ψ (2) are concen-
trated predominantly in and between nuclear planes, respectively 
(“nuclear” planes are determined by the maxima of the nuclear po-
tential). Consequently, neutrons in the states ψ (1) and ψ (2) move 
in different potentials and have slightly different kinetic ener-
gies (i.e., different wavevectors) and different absorption. Deviation 
from the Bragg condition leads to changes in current density direc-
tions and toward opposite sides.

In the case of symmetric Laue diffraction (the input face of the 
crystal is perpendicular to reflecting planes), boundary conditions 
for the wave function inside the crystal give [2]

ψ(r) = ψ (1)(r) cosγ + ψ (2)(r) sinγ . (10)

Thus, at small deviations from the Bragg condition (w g $ 1), 
both states are excited with almost the same probability. However, 
the directions of the neutron current densities jψ (1) and jψ (2) in 
these states can change very significantly when Bragg angles θB

are close to 90◦ , i.e., when k|| $ g/2 (tan θB = g/2k|| & 1) (see 
Fig. 1):

jψ (1,2) ≈ h̄
m

[
k(1,2)

|| ± g
2

w g

]
. (11)

Fig. 1. Symmetric Laue diffraction in an undeformed finite crystal. Neutrons n are 
incident on the crystal at a certain angle different from the Bragg angle θB within 
the Bragg (Darwin) width; jψ (1) and jψ (2) are the neutron flux density vectors of 
two Bloch waves, g is the reciprocal lattice vector, L is the crystal thickness and H
is the height. Here “Kato trajectories” are straight lines directed along the current 
density vectors.

3. External force and “Kato trajectories”

The propagation of a neutron (two-wave packet) under action 
of external force (or in slightly deformed crystal) from a certain 
region on the input face in a crystal can be described by “Kato tra-
jectories” [3]. They are curves tangents to which are directed along 
the current density vector at each point of the trajectory. In an 
undeformed crystal, and when the external force is absent, Kato 
trajectories are straight lines (see Fig. 1), whose slopes are deter-
mined by the parameter w g . When the direction of the incident 
beam is varied within the Bragg angular width, the angle of incli-
nation θ of the Kato trajectory will be varying from −θB to +θB . At 
Bragg angles close to the right angle, the dimensions of the crystal 
(H is the height and L is the thickness) can restrict possible an-
gles of inclination of trajectories if tan θ = H/2L < tan θB as in our 
case.

An external force, acting on the diffracting neutron inside the 
crystal can slightly change the direction of motion (and/or its 
wavelength). This results in a deviation from the Bragg condition 
and change of the amplitudes of the direct and diffracted waves in-
side the crystal. As a result, a substantial deviation of the direction 
of neutron current in the crystal will take place.

In the experiment a double crystal layout as shown in Fig. 2
was used.

A bending of the Kato trajectory due to external force F w in 
a double crystal scheme leads to a spatial shift of the neutron 
beam at the exit face of the second crystal. In order to identify 
the neutrons deviating from the Bragg condition (Kato trajectory) 
the neutron flux is collimated by two slits S1 and S2 at the first 
and second crystal. The spatial distribution of the neutron beam at 
the exit of the second crystal is obtained by a scanning slit S3.

In Fig. 2 we show by red and blue lines the two Kato trajec-
tories of neutrons with opposite spin projection weakly absorbed 
inside the crystal (which belong to one of two branches of the 
neutron dispersion surface in crystal). Having in mind the experi-
mental conditions (large thickness of the crystals and large Bragg 
angles) the neutrons in other diffracting branches are almost com-
pletely absorbed due to the Borman effect [4] by the silicon crystal 
and the according Kato trajectories disappear.

The effect of diffractive amplification of the deviation of a neu-
tron beam inside a crystal is well known long ago. This is why 
the diffraction is widely used to study the fundamental proper-
ties and interactions of the neutron. Those are the development 
of new methods for searching for the neutron electric dipole mo-
ment [5–12], a search for hypothetical CP-violating forces [13], the 
study of the neutrons interaction with gravitational and magnetic 
fields [8,14–16], as well of the effects of neutron acceleration in 

4 V.V. Voronin et al. / Physics Letters B 809 (2020) 135739

Fig. 4. Intensity distributions for different diffraction angles θB at the exit face of the crystal for a field gradient in the vicinity of the neutron beam. Filled squares with 
statistical error bars are the experimental data. The dotted curves denoted with (2) and (3) are fitted Gaussian profiles representing the reflexes of the two spin projections, 
and curve (4) is the sum of both (2) and (3).

a width of 1.6 mm. The entire silicon crystal is clamped onto a 
precision rotation stage, which itself is mounted onto translation 
stages (4). The precision goniometer is used to vary the Bragg an-
gle θB and is controlled via an optical encoder with an precision 
of 0.03◦ . Everything is placed inside a thermostatic box consisting 
of an active and a passive thermal shield 7. The thermostat itself is 
connected to a temperature stabilized liquid circulator Julabo F34-
HE, which allows to achieve a temperature stability of ∼ 0.01 ◦C 
per day on the silicon crystal (under the conditions of the PF1b 
facility).

On the probing silicon crystal the neutron beam itself is colli-
mated by two slits S1, S2 (see Fig. 2), while the spatial distribution 
on the exit of the probing crystal is scanned with slit S3. The slit 
S3 is mounted onto a piezomotor driven translation stage, which 
essentially eliminates all motion related heating of the crystal in-
side the thermostatic box. All slits are made from 0.5 mm thick 
cadmium metal.

Using permanent magnets and a special designed field guide 
(see Fig. 3) a field gradient is generated in the vicinity of the prob-
ing silicon crystal.

Opposing forces will act onto neutrons with opposite spin pro-
jection. Only force components perpendicular to the crystal planes 
along the reciprocal lattice vector g (y-axis) will contribute to a 
deviation from the Bragg condition:

F y = ∓µ
∂ B
∂ y

, (14)

where ∂ B/∂ y – is the magnetic field gradient along y- axis, and µ
– is the magnetic moment of the neutron.

After transmission through the crystal the diffracted neutrons 
are counted by the detector (8) (Fig. 2), which is protected from 
ambient background by the shielding (9). Neutrons not satisfying 
the conditions for diffraction are absorbed in the beam dump (10).

5. Results

The measurements were done for diffraction angles in the 
range of θB = 78◦ − 82◦ . The minimum collimating slit openings of 
S1=17 mm, S2=15 mm, S3=18 mm were chosen to optimize statis-
tics during the given beam time.

The results of the measurement are shown in Fig. 4 and Fig. 5. 
In Fig. 4 the neutron intensity distribution at the exit of the prob-
ing crystal is shown as function of angle θB, where N denotes 
the measured intensity and lS3 is the position of the scanning slit 
S3. The experimental data are shown as filled squares, while the 
curves denoted with (2) and (3) result from fitted Gaussian profiles 
representing the reflexes of the two spin projections and curve (4) 
is the sum of both.

Without a magnetic field the position of the intensity distri-
bution coincides with that shown at θB = 78◦ , but the width is 
slightly smaller and coincides with the widths of the dotted curves 
(2) and (3).

Since the primary neutron beam is unpolarized the two dif-
ferent spin projections are displaced with opposite sign. The dif-
ference in width and amplitude of the double-crystal lines (still 
having the same area under the curve) can be explained by the 
fact that one part is passing the crystal at larger distance (15 mm) 
with respect to the beam center. Due to the particular design of 
the field guide this is leading to an already substantial variation of 
the field gradient at these length scales.

In Fig. 5 we show the dependence of the splitting distance #exp
(filled circles) between the maxima of the double crystal reflexes 
for the two spin projections as function of the Bragg angle θB (see 
curves (2) and (3) in Fig. 4). From the plot it is evident that for 
a maximum diffraction angle of 82◦ the spatial splitting #exp is 
4.1 ± 0.1 cm.

From these data and using the equations (12) and (14) we can 
extract the value of the field gradient (open circles in Fig. 5)
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The waves ψ (1) and ψ (2) are two orthogonal superpositions of 
the direct wave with the wavevector k and the wave with the 
wavevector k + g reflected from crystallographic planes:

ψ (1)(r) = cosγ eik(1)r + sinγ ei[k(1)+g]r, (3)

ψ (2)(r) = − sinγ eik(2)r + cosγ ei[k(2)+g]r. (4)

Here
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The dimensional (#g ) and dimensionless (w g ) parameters describe 
a deviation from the Bragg condition.

The wavevectors k(1) and k(2) belong to different branches of 
the dispersion surface, which is specified by the equation
(

k(1,2)
)2

= K 2 − #g ∓
√

#2
g +

(
U N

g
)2

. (8)

Here, K 2 = k2
e (1 − V N

0 ) is the length squared of the wavevector of 
the neutron incident on the crystal taking into account the average 
refractive index of the crystal, where ke is the wavevector of the 
neutron in vacuum. For cos2 γ in Eqs. (3) and (4), we have
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Under the exact Bragg condition (w g = 0), ψ (1) and ψ (2) are the 
symmetric and antisymmetric combinations of the direct and re-
flected waves, respectively. They propagate along crystallographic 
planes (in the direction k|| = k + g/2, see Fig. 1) with the velocity 
v || = v cos θB . Neutrons in the states ψ (1) and ψ (2) are concen-
trated predominantly in and between nuclear planes, respectively 
(“nuclear” planes are determined by the maxima of the nuclear po-
tential). Consequently, neutrons in the states ψ (1) and ψ (2) move 
in different potentials and have slightly different kinetic ener-
gies (i.e., different wavevectors) and different absorption. Deviation 
from the Bragg condition leads to changes in current density direc-
tions and toward opposite sides.

In the case of symmetric Laue diffraction (the input face of the 
crystal is perpendicular to reflecting planes), boundary conditions 
for the wave function inside the crystal give [2]

ψ(r) = ψ (1)(r) cosγ + ψ (2)(r) sinγ . (10)

Thus, at small deviations from the Bragg condition (w g $ 1), 
both states are excited with almost the same probability. However, 
the directions of the neutron current densities jψ (1) and jψ (2) in 
these states can change very significantly when Bragg angles θB

are close to 90◦ , i.e., when k|| $ g/2 (tan θB = g/2k|| & 1) (see 
Fig. 1):

jψ (1,2) ≈ h̄
m

[
k(1,2)

|| ± g
2
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]
. (11)

Fig. 1. Symmetric Laue diffraction in an undeformed finite crystal. Neutrons n are 
incident on the crystal at a certain angle different from the Bragg angle θB within 
the Bragg (Darwin) width; jψ (1) and jψ (2) are the neutron flux density vectors of 
two Bloch waves, g is the reciprocal lattice vector, L is the crystal thickness and H
is the height. Here “Kato trajectories” are straight lines directed along the current 
density vectors.

3. External force and “Kato trajectories”

The propagation of a neutron (two-wave packet) under action 
of external force (or in slightly deformed crystal) from a certain 
region on the input face in a crystal can be described by “Kato tra-
jectories” [3]. They are curves tangents to which are directed along 
the current density vector at each point of the trajectory. In an 
undeformed crystal, and when the external force is absent, Kato 
trajectories are straight lines (see Fig. 1), whose slopes are deter-
mined by the parameter w g . When the direction of the incident 
beam is varied within the Bragg angular width, the angle of incli-
nation θ of the Kato trajectory will be varying from −θB to +θB . At 
Bragg angles close to the right angle, the dimensions of the crystal 
(H is the height and L is the thickness) can restrict possible an-
gles of inclination of trajectories if tan θ = H/2L < tan θB as in our 
case.

An external force, acting on the diffracting neutron inside the 
crystal can slightly change the direction of motion (and/or its 
wavelength). This results in a deviation from the Bragg condition 
and change of the amplitudes of the direct and diffracted waves in-
side the crystal. As a result, a substantial deviation of the direction 
of neutron current in the crystal will take place.

In the experiment a double crystal layout as shown in Fig. 2
was used.

A bending of the Kato trajectory due to external force F w in 
a double crystal scheme leads to a spatial shift of the neutron 
beam at the exit face of the second crystal. In order to identify 
the neutrons deviating from the Bragg condition (Kato trajectory) 
the neutron flux is collimated by two slits S1 and S2 at the first 
and second crystal. The spatial distribution of the neutron beam at 
the exit of the second crystal is obtained by a scanning slit S3.

In Fig. 2 we show by red and blue lines the two Kato trajec-
tories of neutrons with opposite spin projection weakly absorbed 
inside the crystal (which belong to one of two branches of the 
neutron dispersion surface in crystal). Having in mind the experi-
mental conditions (large thickness of the crystals and large Bragg 
angles) the neutrons in other diffracting branches are almost com-
pletely absorbed due to the Borman effect [4] by the silicon crystal 
and the according Kato trajectories disappear.

The effect of diffractive amplification of the deviation of a neu-
tron beam inside a crystal is well known long ago. This is why 
the diffraction is widely used to study the fundamental proper-
ties and interactions of the neutron. Those are the development 
of new methods for searching for the neutron electric dipole mo-
ment [5–12], a search for hypothetical CP-violating forces [13], the 
study of the neutrons interaction with gravitational and magnetic 
fields [8,14–16], as well of the effects of neutron acceleration in 
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Fig. 2. Double crystal experimental layout (top view): 1 – neutron beam; 2 – con-
crete hutch; 3 – double-crystal monochromator; 4 – translation stage for the crys-
tals including a rotation stage; 5 – two silicon single crystals; 6 – collimating (S1, 
S2) and scanning (S3) slits; 7 – thermostat; 8 – detector; 9 – detector shielding; 10 
– beam dump.

variable magnetic fields [17,18] and in an accelerating crystal [19]. 
Also there are interesting studies of the Schwinger (spin-orbit) 
interaction of the neutron with interplanar electric fields in cen-
trosymmetric [20,21] and non-centrosymmetric crystal [7,9,22–24]
in diffraction and also of its application to control neutron polar-
ization at Laue diffraction in the perfect slightly deformed crystal 
with controlled deformation using a small temperature gradient 
[25].

The effect of diffractive amplification has been directly mea-
sured by Zeilinger et al. [15], with using neutron beam deflec-
tion in inhomogeneous magnetic field. The deflection was more 
105 times (actually 2.1 · 105) larger than in the same fields in 
free space. The authors [15] have obtained the splitting of non-
polarized beam into two also non-polarized beams in contrast to 
the present work. In this paper, we exploit two additional factors 
related to the use of large Bragg angles and large crystal sizes.

First, there is another gain associated with large diffraction an-
gles close to 90◦ , which is proportional to tan2 θB. Its existence is 
based on the fact that diffraction is not governed by the neutrons 
total velocity vn , but its projection onto the crystallographic planes 
v || = vn cos θB [26,27]. When the diffraction angle is increased the 
time spent by the neutron inside the crystal, is growing propor-
tional to tan θB [28]. This gives a new additional amplification 
scheme for measuring forces weakly interacting with the diffract-
ing neutron.

Secondly, for thick crystals and large Bragg angles, due to in-
creasing the time spent by the neutron inside the crystal, effective 
path of neutron in the crystal increases significantly too, so the 
effect of abnormal absorption (Borman effect) becomes very pro-
nounced. It was measured [4] for used silicon crystal and results 
in that only neutrons in the weakly absorbed state survive in con-
trast to ref. [15]. Therefore, the corresponding Kato trajectory splits 
only due to two opposite forces acting on neutrons with oppo-
site spin orientations (Fig. 2), so that the spatial separation of the 
spins occurs, as in the Stern-Gerlach effect, but significantly larger 
in magnitude.

The present experiment is particularly focusing on demonstrat-
ing the extraordinary sensitivity with respect to external forces 
acting on the neutron inside the crystal. The force F w , necessary to 
displace the neutron beam at the exit of the second crystal (in the 
case of three collimating slits and the equal distance L between 
them) by a distance equal to the slit width δs , is [29]

Fig. 3. Schematic view on probing silicon crystal and magnetic field guide: a – prob-
ing silicon crystal, b – rotation stage (also part of field guide), c – neutron beam exit 
area, d – permanent magnets, e – magnetic field guide, f – piezomotor positioner 
of exit slit S3 (slit is not shown).

F w = m0d

π tan2 θB
· 2En

L2 · δs ≡ 1
Ke

· 2En

L2 · δs, (12)

where Ke – is the total coefficient of diffractive amplification, 
(2Enδs)/L2 – the force, perpendicular to the direction of motion 
of the neutron and necessary for a displacement of δs in vacuum, 
m0 ≡ 2F gd/V – the “Kato mass”, V – the crystals unit cell volume, 
F g – the neutron scattering structure amplitude for the crystals 
unit cell, En – the neutron energy, L – the thickness of one crystal.

For the (220) planes of silicon with an interplane distance of 
d = 1.92 Å, as used in the present experiment and for m0 = 774.4
cm−1, the diffractive amplification coefficient becomes

K (220)
e = π tan2 θB

m0d
= 2.1 · 105 · tan2 θB (13)

which predicts a value of K (220)
e = 1.1 · 107 for a maximum Bragg 

angle of 82◦ in the experiment.

4. The setup

The experiment was carried out in 2018 at the PF1b cold neu-
tron beam facility [30] of the Institut Laue-Langevin, Grenoble, 
France. A schematic view of the experiment was shown above 
in Fig. 2. At the beginning the beam of nonpolarized cold neu-
trons (1) is passing onto the monochromator (3), which is shielded 
by a concrete hutch (2). The monochromator, apart from select-
ing a wave length and divergence diapason, is also lowering the 
neutron flux falling onto the actual silicon crystal (5). This also 
decreases the ambient background substantially. The monochro-
mator is mounted on a rotation stage and consists of two crystals 
of pyrolitic graphite (PG) having the (002) planes (dPG = 3.35 Å) 
oriented to the parallel-opposite crystal faces. The reflected wave 
length can be tuned via the rotation stage within a range of 
λ = (3.5 − 3.9) Å. The mosaicity of the crystals is ∼ 0.9◦ , which 
allows to achieve a monochromaticity of %λ/λ ∼ 10−2.

The neutron beam from the monochromator is impinging the 
entry face of the probing silicon crystal (5) having dimensions of 
130 mm × 130 mm × 218 mm. In the experiment the (220) 
diffraction planes with an interplane spacing of d = 1.92 Å were 
used.

The maximum variation of the interplanar spacing %d/d over 
the entire crystal volume should be no more than ∼ 10−7 to ob-
serve the effect. Larger gradients of interplanar distance will lead 
to additional Kato forces, acting in the same directions and with 
the comparable value as the magnetic gradients, and so to the 
broadening of the Kato trajectories and the intensity distribution 
profiles on the output face of the crystal, to a decrease in inten-
sity and the disappearance of the effect. To obtain a double crystal 
geometry the silicon crystal has a cut with a depth of 72 mm and 
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Fig. 2. Double crystal experimental layout (top view): 1 – neutron beam; 2 – con-
crete hutch; 3 – double-crystal monochromator; 4 – translation stage for the crys-
tals including a rotation stage; 5 – two silicon single crystals; 6 – collimating (S1, 
S2) and scanning (S3) slits; 7 – thermostat; 8 – detector; 9 – detector shielding; 10 
– beam dump.

variable magnetic fields [17,18] and in an accelerating crystal [19]. 
Also there are interesting studies of the Schwinger (spin-orbit) 
interaction of the neutron with interplanar electric fields in cen-
trosymmetric [20,21] and non-centrosymmetric crystal [7,9,22–24]
in diffraction and also of its application to control neutron polar-
ization at Laue diffraction in the perfect slightly deformed crystal 
with controlled deformation using a small temperature gradient 
[25].

The effect of diffractive amplification has been directly mea-
sured by Zeilinger et al. [15], with using neutron beam deflec-
tion in inhomogeneous magnetic field. The deflection was more 
105 times (actually 2.1 · 105) larger than in the same fields in 
free space. The authors [15] have obtained the splitting of non-
polarized beam into two also non-polarized beams in contrast to 
the present work. In this paper, we exploit two additional factors 
related to the use of large Bragg angles and large crystal sizes.

First, there is another gain associated with large diffraction an-
gles close to 90◦ , which is proportional to tan2 θB. Its existence is 
based on the fact that diffraction is not governed by the neutrons 
total velocity vn , but its projection onto the crystallographic planes 
v || = vn cos θB [26,27]. When the diffraction angle is increased the 
time spent by the neutron inside the crystal, is growing propor-
tional to tan θB [28]. This gives a new additional amplification 
scheme for measuring forces weakly interacting with the diffract-
ing neutron.

Secondly, for thick crystals and large Bragg angles, due to in-
creasing the time spent by the neutron inside the crystal, effective 
path of neutron in the crystal increases significantly too, so the 
effect of abnormal absorption (Borman effect) becomes very pro-
nounced. It was measured [4] for used silicon crystal and results 
in that only neutrons in the weakly absorbed state survive in con-
trast to ref. [15]. Therefore, the corresponding Kato trajectory splits 
only due to two opposite forces acting on neutrons with oppo-
site spin orientations (Fig. 2), so that the spatial separation of the 
spins occurs, as in the Stern-Gerlach effect, but significantly larger 
in magnitude.

The present experiment is particularly focusing on demonstrat-
ing the extraordinary sensitivity with respect to external forces 
acting on the neutron inside the crystal. The force F w , necessary to 
displace the neutron beam at the exit of the second crystal (in the 
case of three collimating slits and the equal distance L between 
them) by a distance equal to the slit width δs , is [29]

Fig. 3. Schematic view on probing silicon crystal and magnetic field guide: a – prob-
ing silicon crystal, b – rotation stage (also part of field guide), c – neutron beam exit 
area, d – permanent magnets, e – magnetic field guide, f – piezomotor positioner 
of exit slit S3 (slit is not shown).
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L2 · δs ≡ 1
Ke

· 2En

L2 · δs, (12)

where Ke – is the total coefficient of diffractive amplification, 
(2Enδs)/L2 – the force, perpendicular to the direction of motion 
of the neutron and necessary for a displacement of δs in vacuum, 
m0 ≡ 2F gd/V – the “Kato mass”, V – the crystals unit cell volume, 
F g – the neutron scattering structure amplitude for the crystals 
unit cell, En – the neutron energy, L – the thickness of one crystal.

For the (220) planes of silicon with an interplane distance of 
d = 1.92 Å, as used in the present experiment and for m0 = 774.4
cm−1, the diffractive amplification coefficient becomes

K (220)
e = π tan2 θB

m0d
= 2.1 · 105 · tan2 θB (13)

which predicts a value of K (220)
e = 1.1 · 107 for a maximum Bragg 

angle of 82◦ in the experiment.

4. The setup

The experiment was carried out in 2018 at the PF1b cold neu-
tron beam facility [30] of the Institut Laue-Langevin, Grenoble, 
France. A schematic view of the experiment was shown above 
in Fig. 2. At the beginning the beam of nonpolarized cold neu-
trons (1) is passing onto the monochromator (3), which is shielded 
by a concrete hutch (2). The monochromator, apart from select-
ing a wave length and divergence diapason, is also lowering the 
neutron flux falling onto the actual silicon crystal (5). This also 
decreases the ambient background substantially. The monochro-
mator is mounted on a rotation stage and consists of two crystals 
of pyrolitic graphite (PG) having the (002) planes (dPG = 3.35 Å) 
oriented to the parallel-opposite crystal faces. The reflected wave 
length can be tuned via the rotation stage within a range of 
λ = (3.5 − 3.9) Å. The mosaicity of the crystals is ∼ 0.9◦ , which 
allows to achieve a monochromaticity of %λ/λ ∼ 10−2.

The neutron beam from the monochromator is impinging the 
entry face of the probing silicon crystal (5) having dimensions of 
130 mm × 130 mm × 218 mm. In the experiment the (220) 
diffraction planes with an interplane spacing of d = 1.92 Å were 
used.

The maximum variation of the interplanar spacing %d/d over 
the entire crystal volume should be no more than ∼ 10−7 to ob-
serve the effect. Larger gradients of interplanar distance will lead 
to additional Kato forces, acting in the same directions and with 
the comparable value as the magnetic gradients, and so to the 
broadening of the Kato trajectories and the intensity distribution 
profiles on the output face of the crystal, to a decrease in inten-
sity and the disappearance of the effect. To obtain a double crystal 
geometry the silicon crystal has a cut with a depth of 72 mm and 
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Fig. 2. Double crystal experimental layout (top view): 1 – neutron beam; 2 – con-
crete hutch; 3 – double-crystal monochromator; 4 – translation stage for the crys-
tals including a rotation stage; 5 – two silicon single crystals; 6 – collimating (S1, 
S2) and scanning (S3) slits; 7 – thermostat; 8 – detector; 9 – detector shielding; 10 
– beam dump.

variable magnetic fields [17,18] and in an accelerating crystal [19]. 
Also there are interesting studies of the Schwinger (spin-orbit) 
interaction of the neutron with interplanar electric fields in cen-
trosymmetric [20,21] and non-centrosymmetric crystal [7,9,22–24]
in diffraction and also of its application to control neutron polar-
ization at Laue diffraction in the perfect slightly deformed crystal 
with controlled deformation using a small temperature gradient 
[25].

The effect of diffractive amplification has been directly mea-
sured by Zeilinger et al. [15], with using neutron beam deflec-
tion in inhomogeneous magnetic field. The deflection was more 
105 times (actually 2.1 · 105) larger than in the same fields in 
free space. The authors [15] have obtained the splitting of non-
polarized beam into two also non-polarized beams in contrast to 
the present work. In this paper, we exploit two additional factors 
related to the use of large Bragg angles and large crystal sizes.

First, there is another gain associated with large diffraction an-
gles close to 90◦ , which is proportional to tan2 θB. Its existence is 
based on the fact that diffraction is not governed by the neutrons 
total velocity vn , but its projection onto the crystallographic planes 
v || = vn cos θB [26,27]. When the diffraction angle is increased the 
time spent by the neutron inside the crystal, is growing propor-
tional to tan θB [28]. This gives a new additional amplification 
scheme for measuring forces weakly interacting with the diffract-
ing neutron.

Secondly, for thick crystals and large Bragg angles, due to in-
creasing the time spent by the neutron inside the crystal, effective 
path of neutron in the crystal increases significantly too, so the 
effect of abnormal absorption (Borman effect) becomes very pro-
nounced. It was measured [4] for used silicon crystal and results 
in that only neutrons in the weakly absorbed state survive in con-
trast to ref. [15]. Therefore, the corresponding Kato trajectory splits 
only due to two opposite forces acting on neutrons with oppo-
site spin orientations (Fig. 2), so that the spatial separation of the 
spins occurs, as in the Stern-Gerlach effect, but significantly larger 
in magnitude.

The present experiment is particularly focusing on demonstrat-
ing the extraordinary sensitivity with respect to external forces 
acting on the neutron inside the crystal. The force F w , necessary to 
displace the neutron beam at the exit of the second crystal (in the 
case of three collimating slits and the equal distance L between 
them) by a distance equal to the slit width δs , is [29]

Fig. 3. Schematic view on probing silicon crystal and magnetic field guide: a – prob-
ing silicon crystal, b – rotation stage (also part of field guide), c – neutron beam exit 
area, d – permanent magnets, e – magnetic field guide, f – piezomotor positioner 
of exit slit S3 (slit is not shown).

F w = m0d

π tan2 θB
· 2En

L2 · δs ≡ 1
Ke

· 2En

L2 · δs, (12)

where Ke – is the total coefficient of diffractive amplification, 
(2Enδs)/L2 – the force, perpendicular to the direction of motion 
of the neutron and necessary for a displacement of δs in vacuum, 
m0 ≡ 2F gd/V – the “Kato mass”, V – the crystals unit cell volume, 
F g – the neutron scattering structure amplitude for the crystals 
unit cell, En – the neutron energy, L – the thickness of one crystal.

For the (220) planes of silicon with an interplane distance of 
d = 1.92 Å, as used in the present experiment and for m0 = 774.4
cm−1, the diffractive amplification coefficient becomes

K (220)
e = π tan2 θB

m0d
= 2.1 · 105 · tan2 θB (13)

which predicts a value of K (220)
e = 1.1 · 107 for a maximum Bragg 

angle of 82◦ in the experiment.

4. The setup

The experiment was carried out in 2018 at the PF1b cold neu-
tron beam facility [30] of the Institut Laue-Langevin, Grenoble, 
France. A schematic view of the experiment was shown above 
in Fig. 2. At the beginning the beam of nonpolarized cold neu-
trons (1) is passing onto the monochromator (3), which is shielded 
by a concrete hutch (2). The monochromator, apart from select-
ing a wave length and divergence diapason, is also lowering the 
neutron flux falling onto the actual silicon crystal (5). This also 
decreases the ambient background substantially. The monochro-
mator is mounted on a rotation stage and consists of two crystals 
of pyrolitic graphite (PG) having the (002) planes (dPG = 3.35 Å) 
oriented to the parallel-opposite crystal faces. The reflected wave 
length can be tuned via the rotation stage within a range of 
λ = (3.5 − 3.9) Å. The mosaicity of the crystals is ∼ 0.9◦ , which 
allows to achieve a monochromaticity of %λ/λ ∼ 10−2.

The neutron beam from the monochromator is impinging the 
entry face of the probing silicon crystal (5) having dimensions of 
130 mm × 130 mm × 218 mm. In the experiment the (220) 
diffraction planes with an interplane spacing of d = 1.92 Å were 
used.

The maximum variation of the interplanar spacing %d/d over 
the entire crystal volume should be no more than ∼ 10−7 to ob-
serve the effect. Larger gradients of interplanar distance will lead 
to additional Kato forces, acting in the same directions and with 
the comparable value as the magnetic gradients, and so to the 
broadening of the Kato trajectories and the intensity distribution 
profiles on the output face of the crystal, to a decrease in inten-
sity and the disappearance of the effect. To obtain a double crystal 
geometry the silicon crystal has a cut with a depth of 72 mm and 
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Fig. 4. Intensity distributions for different diffraction angles θB at the exit face of the crystal for a field gradient in the vicinity of the neutron beam. Filled squares with 
statistical error bars are the experimental data. The dotted curves denoted with (2) and (3) are fitted Gaussian profiles representing the reflexes of the two spin projections, 
and curve (4) is the sum of both (2) and (3).

a width of 1.6 mm. The entire silicon crystal is clamped onto a 
precision rotation stage, which itself is mounted onto translation 
stages (4). The precision goniometer is used to vary the Bragg an-
gle θB and is controlled via an optical encoder with an precision 
of 0.03◦ . Everything is placed inside a thermostatic box consisting 
of an active and a passive thermal shield 7. The thermostat itself is 
connected to a temperature stabilized liquid circulator Julabo F34-
HE, which allows to achieve a temperature stability of ∼ 0.01 ◦C 
per day on the silicon crystal (under the conditions of the PF1b 
facility).

On the probing silicon crystal the neutron beam itself is colli-
mated by two slits S1, S2 (see Fig. 2), while the spatial distribution 
on the exit of the probing crystal is scanned with slit S3. The slit 
S3 is mounted onto a piezomotor driven translation stage, which 
essentially eliminates all motion related heating of the crystal in-
side the thermostatic box. All slits are made from 0.5 mm thick 
cadmium metal.

Using permanent magnets and a special designed field guide 
(see Fig. 3) a field gradient is generated in the vicinity of the prob-
ing silicon crystal.

Opposing forces will act onto neutrons with opposite spin pro-
jection. Only force components perpendicular to the crystal planes 
along the reciprocal lattice vector g (y-axis) will contribute to a 
deviation from the Bragg condition:

F y = ∓µ
∂ B
∂ y

, (14)

where ∂ B/∂ y – is the magnetic field gradient along y- axis, and µ
– is the magnetic moment of the neutron.

After transmission through the crystal the diffracted neutrons 
are counted by the detector (8) (Fig. 2), which is protected from 
ambient background by the shielding (9). Neutrons not satisfying 
the conditions for diffraction are absorbed in the beam dump (10).

5. Results

The measurements were done for diffraction angles in the 
range of θB = 78◦ − 82◦ . The minimum collimating slit openings of 
S1=17 mm, S2=15 mm, S3=18 mm were chosen to optimize statis-
tics during the given beam time.

The results of the measurement are shown in Fig. 4 and Fig. 5. 
In Fig. 4 the neutron intensity distribution at the exit of the prob-
ing crystal is shown as function of angle θB, where N denotes 
the measured intensity and lS3 is the position of the scanning slit 
S3. The experimental data are shown as filled squares, while the 
curves denoted with (2) and (3) result from fitted Gaussian profiles 
representing the reflexes of the two spin projections and curve (4) 
is the sum of both.

Without a magnetic field the position of the intensity distri-
bution coincides with that shown at θB = 78◦ , but the width is 
slightly smaller and coincides with the widths of the dotted curves 
(2) and (3).

Since the primary neutron beam is unpolarized the two dif-
ferent spin projections are displaced with opposite sign. The dif-
ference in width and amplitude of the double-crystal lines (still 
having the same area under the curve) can be explained by the 
fact that one part is passing the crystal at larger distance (15 mm) 
with respect to the beam center. Due to the particular design of 
the field guide this is leading to an already substantial variation of 
the field gradient at these length scales.

In Fig. 5 we show the dependence of the splitting distance #exp
(filled circles) between the maxima of the double crystal reflexes 
for the two spin projections as function of the Bragg angle θB (see 
curves (2) and (3) in Fig. 4). From the plot it is evident that for 
a maximum diffraction angle of 82◦ the spatial splitting #exp is 
4.1 ± 0.1 cm.

From these data and using the equations (12) and (14) we can 
extract the value of the field gradient (open circles in Fig. 5)
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Fig. 5. Distance between the two intensity maxima of the two spin projections (see 
Fig. 4), field gradient as function of diffraction angle θB and calculated average value 
of the field gradient.

∂ B
∂ y

= 2En

µK (220)
e L2

· #exp

2
. (15)

The average value of the field gradient along the neutron 
beam was calculated to be 3.12 ± 0.09 G/cm (see Fig. 5), which 
is consistent with estimates based on magnetometer readings 
at three points on each side (input and output) of the crystal 
3.0 ± 0.3 G/cm. For comparison, the spatial split for neutrons 
with a wave length λ = 3.8 Å (which corresponds to Bragg an-
gle of 82◦) moving in free space under the same field gradient 
through the same 3-slit collimator without crystal (removed from 
the setup), can be calculated to be 3.9 · 10−7 cm. From this we 
can deduce the measured diffractive amplification coefficient to be 
Kexp ∼ 2 · 105 tan2 θB, which agrees well with theory.
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Fig. 5. Distance between the two intensity maxima of the two spin projections (see 
Fig. 4), field gradient as function of diffraction angle θB and calculated average value 
of the field gradient.
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The average value of the field gradient along the neutron 
beam was calculated to be 3.12 ± 0.09 G/cm (see Fig. 5), which 
is consistent with estimates based on magnetometer readings 
at three points on each side (input and output) of the crystal 
3.0 ± 0.3 G/cm. For comparison, the spatial split for neutrons 
with a wave length λ = 3.8 Å (which corresponds to Bragg an-
gle of 82◦) moving in free space under the same field gradient 
through the same 3-slit collimator without crystal (removed from 
the setup), can be calculated to be 3.9 · 10−7 cm. From this we 
can deduce the measured diffractive amplification coefficient to be 
Kexp ∼ 2 · 105 tan2 θB, which agrees well with theory.
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Fig. 5. Distance between the two intensity maxima of the two spin projections (see 
Fig. 4), field gradient as function of diffraction angle θB and calculated average value 
of the field gradient.
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The average value of the field gradient along the neutron 
beam was calculated to be 3.12 ± 0.09 G/cm (see Fig. 5), which 
is consistent with estimates based on magnetometer readings 
at three points on each side (input and output) of the crystal 
3.0 ± 0.3 G/cm. For comparison, the spatial split for neutrons 
with a wave length λ = 3.8 Å (which corresponds to Bragg an-
gle of 82◦) moving in free space under the same field gradient 
through the same 3-slit collimator without crystal (removed from 
the setup), can be calculated to be 3.9 · 10−7 cm. From this we 
can deduce the measured diffractive amplification coefficient to be 
Kexp ∼ 2 · 105 tan2 θB, which agrees well with theory.
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Abbildung 2.12: Alternative Darstellung der Verschiebung der Reflexionskurven aus [51].
Der Totalreflexionsbereich verschiebt sich bei vorhandenem externen Ma-
gnetfeld zu Neutronen höherer bzw. niedrigerer Energie.

gleich-verteilten y-Werten erhält man aus der Integration

I±ba(!y) =
1

yb − ya

∫ yb+!y

ya+!y
T (y)dy . (2.27)

Abb. 2.13 zeigt das Ergebnis der berechneten Transmissionswahrscheinlichkeit [37] als
Funktion des anliegenden Magnetfeldes. Bei etwa 1.5 T wird eine Transmissionswahr-
scheinlichkeit von 90% erreicht. Wird, wie in Abschnitt 3.3.3 experimentell gezeigt, ein
Magnetfeld von 1 T angelegt, sinkt die Transmissionswahrscheinlichkeit auf etwa 60% ab.

Abbildung 2.13: Transmissionswahrscheinlichkeit einer Neutronenverteilung durch eine
Siliziumkristallplatte bei Anlegen eines Magnetfeldes. Für die verschie-
denen Siliziumreflexe wird die Verteilung der Neutronen im y-Intervall
[-1,1] als gleich verteilt angenommen. Übernommen aus [37].
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beträgt, gemäß Gleichung (2.1) auf einen Braggwinkel von 69.16◦ ausgerichtet werden.
Dies geschieht, indem man den Kristall in Rückstreurichtung (θ = 90◦) bringt, wodurch die
reflektierte Wellenlänge ein Maximum (6.71 Å) annimmt. Diese rückgestreuten Neutronen
erscheinen als Senke im Incident Beam-Monitor und Transmitted Beam-Monitor von IRIS.
Im Time-Of-Flight Spektrum Abb. 3.13 bedeutet dies, dass die Position dieser Senke je
nach Stellung des Kristalls variiert und bei Rückstreuung ein zeitliches Maximum (längste
Laufzeit) erreicht. Ausgehend von dieser Position kann nun die Laufzeit in eine Wellenlänge
umgerechnet und somit der gewünschte Bragg-Winkel direkt im IRIS Monitor eingestellt
werden. Zusätzlich verfügt der Rotationsmechanismus über einen Inkementalkodierer und
ein Anzeigegerät (Micro Control CV78), die ebenfalls eine definierte Rotation in 0.01◦

Schritten erlauben. An IRIS ergab sich die maximale Laufzeit zu 61.123(1) ms, die Laufzeit
für den Kristall in Arbeitsposition zu 57.139(3) ms. Nach der Reflexion am Monochromator
treten die Neutronen in einem Winkel von 41.68◦ (bezüglich des IRIS Strahls) durch ein
Aluminium-Fenster aus und stehen als sekundärer Strahl für die weiteren Messungen zur
Verfügung. Dieser Strahl besitzt anfänglich eine Breite von etwa 20 mm und eine Höhe
von 58 mm. Der Neutronenfluss im Strahl wurde mittels Goldfolienaktivierung auf Φvst

= 2.94(30) ·104n/s·cm2 bestimmt. Weitere Messungen und Rechnungen zu der Intensität
und Divergenz des Strahls finden sich in [37].
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Abbildung 3.14: Aufbau des ersten permanent installierten Speicherexperiments. IRIS-
Beamline (1), Monochromator-Kristall (2), vordere Speicher-Kristall-
platte (3), Einlassmagnet (4), Neutronenleiter (5), hintere Speicher-
Kristallplatte (6), Auslassmagnet (7), Detektoren (8), Shutter (9).

Durch die Schaffung einer eigenen Beamline ergab sich der in Abb. 3.14 dargestellte
Aufbau des ersten permanent installierten Speichers. Bereits eingezeichnet ist der in 3.3.2
beschriebene Shutter zur Unterdrückung nachfolgender ISIS Pulse.

Entwicklung einer Steuerelektronik

Mit seiner neuen Position als permanent installiertes Experiment wurde VESTA auch
mit einer eigenen Datenerfassungselektronik (DAE) und Synchronisationselektronik (SCE)
ausgerüstet. Die Datenerfassung basiert auf der an ISIS verwendeten Standardelektronik
bestehend aus einem Steuerrechner (VAX oder Alpha Station) mit Betriebsystem VMS,
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Abbildung 3.18: Vergleich der Speicherergebnisse des Prototyps mit dem installierten Ex-
periment. Die Versuchsreihe VESTA-2 bezieht sich auf die justierte und
optimierte Anlage (a). Nach Installation eines Shutters konnte auch bei
einer Speicherzeit von 4.2 Sekunden (2500 aufeinander folgende Refle-
xionen am Silizium) noch ein gutes Signal erhalten werden (b).

Die im Rahmen von [38] sowie den vorbereitenden Messungen zu dieser Dissertation
durchgeführten Justierungen ermöglichten es, einen neuen Speicherrekord für kalte Neu-
tronen zu erzielen [62]. Abb. 3.18 zeigt die Entwicklung der Speicherzeiten über die Jahre.
Mit dem Prototyp (grüne Messkurve), der sich im direkten ISIS-Strahl befand, wurden
Speicherzeiten von 0.26 Sekunden (78 Traversen) erreicht. Deutlich sieht man den raschen
Abfall gespeicherter Neutronen mit zunehmender Speicherzeit. Demgegenüber ermöglicht
der permanent installierte Speicher (blau) aufgrund seiner Verbesserungen bereits deut-
lich verlängerte Speicherzeiten. Durch die höhere Effizienz der Detektoren wird der ge-
ringere Neutronenfluss der sekundären Beamline ausgeglichen. Die als Vesta-2 bezeich-
nete Messserie zeigt den Einfluss der Justierung auf das erreichbare Speicherverhalten.
Selbst bei einer Speicherzeit von 4.2 Sekunden können die aus dem Speicher entlassenen
Neutronen noch als klares Signal (Abb. 3.18-b) registriert werden. Diese Speicherzeit ent-
spricht 2500 aufeinander folgenden Reflexionen am Silizium (1250 Traversen) sowie einer
zurückgelegten Flugstrecke von 2.66 km. Limitiert wird die erreichbare Speicherzeit nicht
zuletzt durch die zur Justierung und Speicherung vorhandene Messzeit.

Ergebnisse der Computersimulation

Der Einfluss der Justierung einzelner Komponenten war auch Teil der von G.X. Evrard
überarbeiteten Computersimulation der Anlage [50]. Ausgehend von einer optimalen Ju-
stierung, zeigt Tabelle 3.2 diejenigen Werte, bei denen, für verschieden lange Speicherzei-
ten, ein Verlust von 50% der gespeicherten Neutronen auftritt. Bei einer Messkurve der
Veränderung des betreffenden Parameters entsprechen diese Werte der halben Breite bei
halber Höhe (HWHM). Die unterschiedlichen Werte für horizontale und vertikale Fehlju-
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Abbildung 4.9. Ausschnitte aus den Spektren in Abbildung 4.8. (a) Graphit-(002), (b) Graphit-
(004). Zum Vergleich wurde das dargestellte Zeitintervall in beiden Fällen gleich 2 ms gesetzt.
Das gewählte Zählratenintervall beträgt in beiden Bildern 40% von der Gesamtintensität zum
Zeitpunkt t , d.h. von der Größe B - AD mit den Fitparametern der Funktion (4.5). Das Fitergeb-0
nis ist in beiden Fällen als durchgezogene Kurve dargestellt. Die aus den Fitparametern abgelei-
teten charakteristischen Größen sind in Tabelle 4.5 zusammengefaßt.

zu

(4.13)

Die ungestörte Intensität in diesem Intervall beträgt pro Einheit der Zeitskala tS

(4.14)

Dabei ist  ein Konversionsfaktor, der den Unterschied zwischen einer Zeitkanalbreite, t ,tc c
und der Zeitskaleneinheit, t , berücksichtigt. Für die vorliegende Arbeit gilt t  = 10 µs undS c 

t  = 1 ms. Damit folgt für den KonversionsfaktorS 

(4.15)

Die reflektierte Intensität I  kann als Integral über die gaußförmigen Komponenten von f (t) de-0 I 
finiert werden. Es ergibt sich

(4.16)

R~30%

Why revitalizing this setup:
• ISIS beam was not ideal: 3x104 n/s
• Use perfect crystal monochr. (R, T, Dq)
• No need to have monolith:

=> larger flight distance
=> no need for pulsed field (all polarization)

• Si220 reflector => 2x better probe of angular deviations
2.5 km flight path!

200m 
flight path!

E. Jericha et al. Nucl. Instr. Meth. A 379 (1996) 330
PhD Thesis of E. Jericha, TU Wien
PhD Thesis of N. Jaeckel, TU Wien
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Figure 4. Left: Simulated divergence distributions in horizontal (x) and vertical (y) direction at the guide exit for neutrons between
2 Å and 8 Å (weighted with their capture cross-section and integrated over the other direction and the guide exit area). Right: Simulated
capture flux density spectrum averaged over the guide exit.

Table 3. Simulated gain in counting rate for the reference
experiments at ANNI (ESS at 5 MW) relative to the respective
presently used facility. Gains marked by ↑ refer to polarised
beams. Details on the determination of the gain factors are given
in appendix A.

Experiment Gain Comment

aSPECT 1.3 Full spectrum

2.8 Localisation in time to 1/3 of

ESS period

NPDGamma 27↑ Wavelength information

PERC 15↑ Localisation in space

PERKEO III 17↑ Localisation in space

5. Conclusions and outlook

The proposed neutron beam facility ANNI will provide
unprecedented pulsed intensity for particle physics
experiments and its time-averaged flux will still at least
equal existing reactor facilities. Its design allows to fully
exploit the ESS pulse structure and to use the optimum
polarisation option for each experiment. Particle physics
experiments using pulsed beams will gain one order of
magnitude in event rate compared to other facilities. ANNI
will enable a new level of accuracy in measurements
of correlation coefficients in neutron beta decay, novel
methods to determine electromagnetic properties of the
neutron and systematic access to the tiny effects of
hadronic weak interaction in calculable systems.

The design proposed in this paper can be further
optimised and should therefore be considered as prelimi-
nary. In particular, particle physics experiments have more
demanding background requirements than instruments for
neutron scattering. Therefore the ANNI design should
be validated and optimised for background suppression
from the spallation source. As example, the long bending
sections may be replaced by compact solid state benders,
which may result in more localised sources for secondary
particles that are easier to shield. This would also allow
for a compact solid state polariser [32] as integrated
polariser option with better performance. Furthermore, the
design proposed here is chosen as best compromise for
the considered suite of reference experiments but scientific

priorities could also call for full optimisation towards one
specific experiment.
We thank Dr. Grammer and Dr. Fomin for sharing the MCNPX
model of NPDGamma at the SNS and Mr. Hollering for
providing McStas parametrisations of the supermirrors of the
PERC internal guide.

A. Reference experiments
The suite of reference experiments was selected in order
to cover most of the particle physics experiments at
cold neutron beams. A short description of the selected
experiments is given below; the most relevant parameters
for the simulations are summarised in Table 4.

aSPECT [18,19] is the prototype for a neutron decay
experiment with short decay volume, low sensitivity to
gamma background and consequently a large angular
acceptance for neutrons. The experiment uses an
unpolarised continuous beam. Since Penning traps may
cause background with time constants large compared
to the ESS pulse length [40], aSPECT may profit
from localisation of the neutron pulse in time for
an improved signal-to-background ratio. From the
collimation system used in the aSPECT experiment
(see [41]), only the last aperture in front of the
spectrometer and all apertures inside the cryostat were
used in the simulations since this is preferable for
statistics and systematics (smaller edge effect because
of the more homogeneous beam profile). The gain
in Table 3 corresponds to the ratio of the simulated
capture intensities in the decay volume for aSPECT
at ANNI (all choppers at rest, full neutron spectrum)
and at PF1B. Pulse localisation in time was realised
by the PDC2 chopper directly upstream of the last
aperture in front of the spectrometer. In the simulations
of PF1B, only this chopper was used; in case of ANNI
additionally the FOCs suppressed frame overlap. The
PDC2 was run at 14 Hz and its opening was chosen
to limit the arrival of neutrons in the decay volume
to 1/3 of the chopper period (at PF1B, 10−4 of the
intensity were allowed in the other 2/3 since a single
chopper does not cut the tail of the spectrum). This time
localisation reduces the time-averaged counting rate at
ANNI to about 62% and at PF1B to about 28% of the
respective full rate.
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