# Diffraction enhanced experiments for Particle Physics 

Michael Jentschel, Hartmut Lemmel, Valery Nesvizhevsky,

## Why diffraction?

## Perfect Crystal Diffraction:

Phase space filter
Sets up correlations
Beam optics


Stability of GAMS6


## Why diffraction?

## Perfect Crystal Diffraction:

Phase space filter
Sets up correlations

## Beam optics



Stability of GAMS6


## Dynamical diffraction theory



## Dynamical diffraction theory



## Dynamical diffraction theory





## Correlations: $\lambda(\theta) ; \lambda(t)$

Time of flight: $\lambda(t)=$




guide divergence $\sim 10^{-3} \mathrm{rad}, \theta=45^{\circ} \mathrm{T}=\mathrm{T} / 785\left(\sim 10^{-6} \mathrm{~s}\right)$

## Thermal Neutron Interferometry



Monochromator: perfect single crystal Si220 in Bragg
Interferometer: solid Si block, Si220, non-dispersive geometry


## Thermal Neutron Interferometry



## Main problem:

- limited size
- limited sample
- Limited sensitivity
- Sensitivity to environement
- limited flexibility


Monochromator: perfect single crystal Si220 in Bragg Interferometer: solid Si block, Si220, non-dispersive geometry


## Idea of a split crystal interferometer



## Attempt to build split crystal interferometer



No interference was achieved $->$ Project stopped 0


## Loss of coherence?

Spatial distribution of phase




$x=20, y=20$
contr=0.112618
offs=410.212
phase $=229.404$
period $=10.0034$ number

## Loss of coherence?

Spatial distribution of phase





$x=16, y=3$
contr=0.763348 offs $=585.248$ phase $=34.462^{\circ}$ period $=10.0527$
$x=20, y=20$
contr=0.112618
offs=410.212
phase $=229.404^{\circ}$
period $=10.0034$


Phase/contrast time integrated


Phase/contrast time binned



## New attempt of a split crystal <br> IOP Institute of Physics $\mathbf{\Phi}$ DeUTSCHE PHYSIK



(c)




## How to get to nrad with neutrons?


no coherence $C(t)$ Poisson distributed -> noise in FFT


## Project combined Optical, X-ray and Neutron interferometry

- Probing different interactions, different time scales, different length scales within one device
- X-rays: $10^{8} \mathrm{~m} / \mathrm{s}$, electromagnetic interaction (local electron density), wavelength $10^{-10} \mathrm{~m}$
- Neutrons: $10^{3} \mathrm{~m} / \mathrm{s}$, strong interaction, spin, wavelength $10^{-10} \mathrm{~m}$
- Light: $10^{8} \mathrm{~m} / \mathrm{s}$, electromagnetic interaction (integrated electron density), wavelength $10^{-7} \mathrm{~m}$
- ESS: interesting source for Neutron interferometry






## Storing neutrons via diffraction





Why revitalizing this setup:

- ISIS beam was not ideal: $3 \times 10^{4} \mathrm{n} / \mathrm{s}$
- Use perfect crystal monochr. (R, T, $\Delta \theta$ )
- No need to have monolith:
=> larger flight distance
=> no need for pulsed field (all polarization)
- Si220 reflector $=>2 x$ better probe of angular deviations
E. Jericha et al. Nucl. Instr. Meth. A 379 (1996) 330

PhD Thesis of E. Jericha, TU Wien
PhD Thesis of N. Jaeckel, TU Wien

## Diffraction based storage @ ANNI




Neutron charge measurement:

Dispersive storage



Storage opening via $10^{-4}$ rad kick during Pulse, $\mathrm{n} \times 85 \mathrm{~m}$ until next $\mathrm{n}^{\text {th }}$ pulse. Measurement of storage time as function of $E$

