Diffraction enhanced experiments for Particle Physics

Michael Jentschel, Hartmut Lemmel, Valery Nesvizhevsky,

Why diffraction?

Perfect Crystal Diffraction: Phase space filter Sets up correlations Beam optics

Why diffraction?

Perfect Crystal Diffraction:

Phase space filter

Sets up correlations

Beam optics

Outline:

- Diffraction of perfect crystals
- Towards a split crystal interferometer
- Diffraction enhanced measurements

Dynamical diffraction theory

Dynamical diffraction theory

Dynamical diffraction theory

Thermal Neutron Interferometry

<u>Monochromator:</u> perfect single crystal Si220 in Bragg <u>Interferometer:</u> solid Si block, Si220, non-dispersive geometry

Thermal Neutron Interferometry

<u>Monochromator:</u> perfect single crystal Si220 in Bragg <u>Interferometer:</u> solid Si block, Si220, non-dispersive geometry

Main problem:

- limited size
 - limited sample
 - Limited sensitivity
- Sensitivity to environement
- limited flexibility

Idea of a split crystal interferometer

Attempt to build split crystal interferometer

Aufbau und Messungen mit dem Zweikristall-Röntgen-Neutronen-Interferometer

Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften der Abteilung Physik der Universität Dortmund

> vorgelegt von HUBERT UEBBING 1991

No interference was achieved -> Project stopped •

AG (SECONDS OF ARC)

Loss of coherence?

Loss of coherence?

Temporal distribution of phase (neutron is 1 x10⁻⁴ s within interferometer)

How to get to nrad with neutrons?

Project combined Optical, X-ray and Neutron interferometry

- Probing different interactions, different time scales, different length scales within one device
 - X-rays: 10⁸ m/s, electromagnetic interaction (local electron density), wavelength 10⁻¹⁰m
 - Neutrons: 10³ m/s, strong interaction, spin, wavelength 10⁻¹⁰m
 - Light: 10⁸ m/s, electromagnetic interaction (integrated electron density), wavelength 10⁻⁷ m
- ESS: interesting source for Neutron interferometry

Vibration Measurements S18

Storing neutrons via diffraction

Why revitalizing this setup:

- ISIS beam was not ideal: 3x10⁴ n/s
- Use perfect crystal monochr. (R, T, $\Delta \theta$)
- No need to have monolith:
 - => larger flight distance
 - => no need for pulsed field (all polarization)
- Si220 reflector => 2x better probe of angular deviations

E. Jericha et al. Nucl. Instr. Meth. A 379 (1996) 330 PhD Thesis of E. Jericha, TU Wien PhD Thesis of N. Jaeckel, TU Wien

Diffraction based storage @ ANNI

