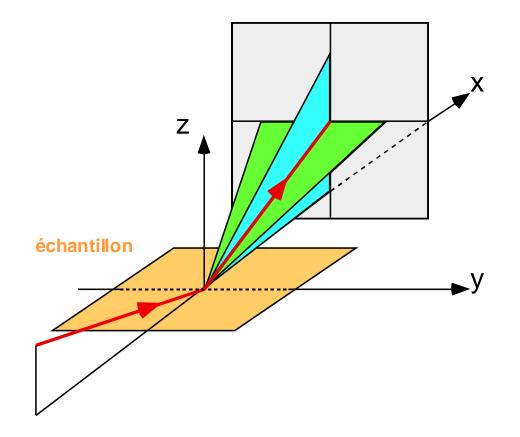


OPPORTUNITIES IN THE USE OF VERY COLD NEUTRONS FOR REFLECTOMETRY TECHNIQUES.

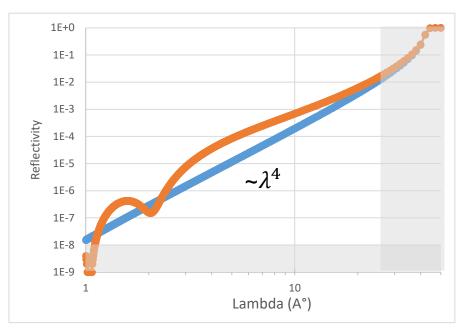
F. OTT LABORATOIRE LÉON BRILLOUIN CEA/CNRS UNIV. PARIS SACLAY

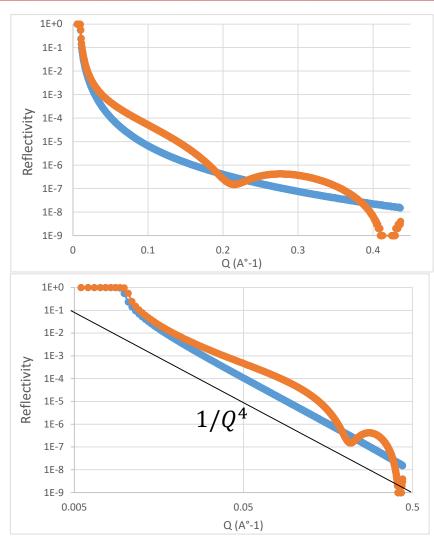

| PAGE 1

WHAT DO WE AIM AT PROBING ?

What science ?

- \rightarrow nanoscale (1-10nm) structure of interfaces
 - Lower values : not accessible
 - Higher values : of little interest
- Only a structural method (so far)
- Polymer films interfaces, solid liquid interfaces, liquid surfaces, magnetic films

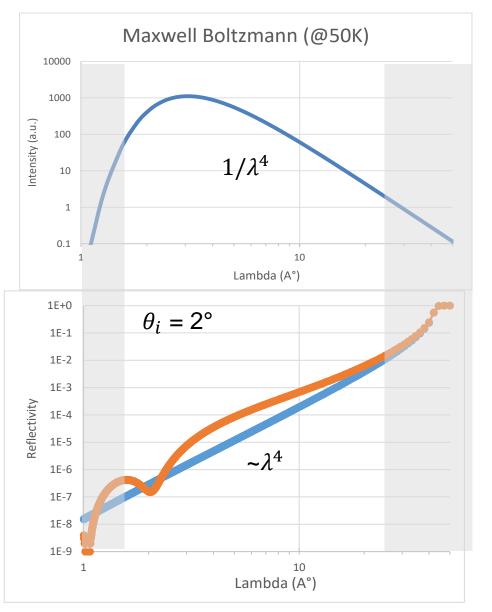

- Specular reflection $0.06 < Q_z < 3 \text{ nm}^{-1}$ $1 \text{ nm} < \xi < 100 \text{ nm}$
- Incidence plane (Off-specular) 10⁻⁴ < Q_x < 10⁻² nm⁻¹
 600 nm < ξ < 60 μm
- \perp incidence plane (GISANS) 10⁻⁴ < Q_y < 3 nm⁻¹ 3 nm < ξ < 100 nm



REFLECTOMETRY IS ESPECIALLY SUITED TO TOF

NOTA: the presentation focusses on VNC use at pulsed sources

- Sample reflectivities follow a $1/Q^4$ trend with modulations around this general trend $R(Q) \propto 1/Q^4$
 - In « experimental space » the measurement looks as (incidence angle of 2°)



Si substrate and SiO₂//Si

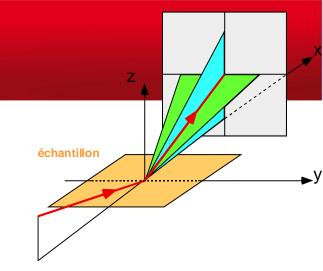
MATCHING THE INCIDENT SPECTRUM AND THE REFLECTIVITY RANGE OF INTEREST

Reflectometry measurements on a long pulse source are using neutrons very efficiently in TOF mode.

 All neutrons provide information with a roughly equivalent statistics over a wide Q range (within a factor 3)

$$Q = \frac{4\pi}{\lambda} \sin \theta_i$$

The probed Q-range of interest can be tuned by simply changing the incidence angle θ_i


- 1°/ The physics probed by the neutrons does not depend on the wavelength
- 2°/ For a given Q range of interest
 - If the wavelength spectrum is shifted by a factor α, it involves using incidence angles θ_i which are α times larger.

$$Q = \frac{4\pi}{\lambda} \sin \theta_i \approx \frac{4\pi}{\lambda} \theta_i$$

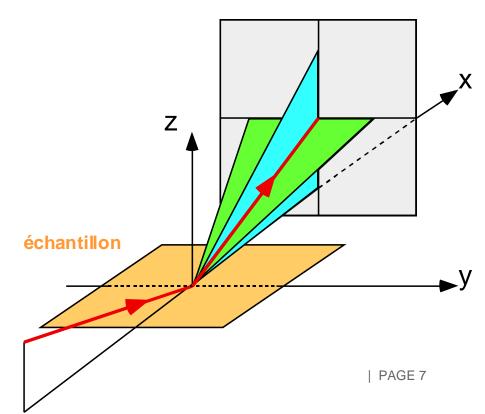
- Assuming a constant $\delta\theta/\theta_i$, the angular resolution can be relaxed by a factor α (by simply relaxing the collimation slits)
- There are second order corrections if the sample is over-illuminated or underilluminated
- \rightarrow The gain in flux is proportionnal to the wavelength spectrum shift α
- Note that for large samples (ex. Langmuir trough 100mm long), increasing the incidence angle from typically 4° to 12°, requires designing collimations which are on the order of 12m to fully benefit from the new wavelength spectrum → It is not a technical challenge but it is an unusual design for reflectometers.
 - 3°/ The absorption effects remain usually negligible
 - 4°/ There are no « multiple scattering » issues. The measurement remains as « clean and simple » as before whatever the incident wavelength spectrum.

<u>Specular</u> Reflectometry is 1D technique Q directions perpendicular to the sample surface are probed

Optics improvement

- There are no phase space constrains in the direction perpendicular to the incidence plane Hence the beam can be focussed as much as possible in this direction
- The efficiency of reflective optics scales as $m \times 0.1^{\circ} / \text{Å}$ where *m* is the reflectivity enhancement factor of the super mirrors compared to nickel mirrors.
- If the wavelength spectrum is shifted by a factor α , the angular phase space which can be used (perpendicular to the incidence plane) is also multiplied by a factor α

Beware that this has practical limitations


- With a highly focussing optics in the plane perpendicular to the incidence plane, one has to ensure that all neutrons are collected by the detector.
- Assuming for example an operation with wavelengths up to 50 Å, and m=4 optics, the critical angle of reflexion is on the order of 20°. If the detector is set at 1.5m from the sample (=focal point), the footprint at the detector position is 1500 x 2 x sin(20°) = 1000mm !
- Assuming these technical constrains can be overcome, the gain in flux is proportional to α

Off-specular scattering

 \rightarrow the same considerations as for specular reflectometry apply

GISANS

 \rightarrow the focussing optics cannot be used

The ESS long pulse / low repetition rate is especially suited to low resolution techniques such as reflectometry.

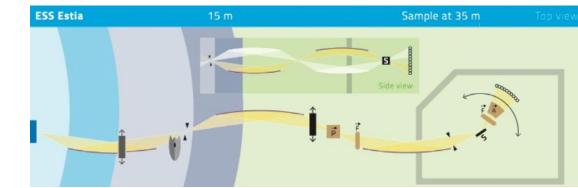
Using VCN introduces extra constrains

Assuming that the wavelength spectrum is shifted by a factor α , and that the pulse length is kept constant (at 2.6ms),

- The instrument length would be increased by a factor α to keep the same resolution
 Any increase in the pulse length would lead to a proportionnal increase of the instrument length to compensate
- When the pulse time structure become too sub-optimal, other implementations could be considered but they would be less efficient and reduce the Q-range which can be measured (for a given θ_i)
- At the extreme limit, using a continuous VCN source would lead to only marginal improvements compared to ILL instruments.

CASE OF A CONTINUOUS SOURCE

The above considerations apply also for reflectometry implemented on a continuous source


- Either on a fixed wavelength instrument where the operation wavelength can be shifted to higher values
- Or on a chopper TOF instrument for which the very same considerations apply

In the previous decades other implementation of reflectometry measurements have been proposed:

- Energy analysis of a white beam (via refraction or optics, ex. RAINBOW or EASYREF) Such techniques are efficient only on continuous sources but would strongly benefit from a shift to longer wavelengths
 - Optics efficiency is proportional to λ (*m* x 0.1°/Å)
 - **Refraction efficiency is proportional to** λ^2
- **SERGIS** techniques using spin-echo techniques
 - Refer to the discussion on the Spin-Echo techniques with VCN

■ SELENE type (→ ESTIA@ESS)

- Optics efficiency is proportional to the wavelength $(m \times 0.1^{\circ} / \text{\AA})$
- Technical implementation is much easier
- Either shorter optics or broader λ and angular range

The time structure of ESS is ideally suited for reflectometry experiments \rightarrow hard to compete

Assuming a temperature shift from 20K to 5K,

The wavelength spectrum would be shifted by a factor 2

Technique	Gain	20K → 5K
Specular reflectivity	$\propto \lambda^2$	4
Off-specular reflectivity	$\propto \lambda^2$	4
GISANS	$\propto \lambda$	2

- Assuming that the integrated VCN flux is identical to the CN flux (brightness value)
 Assuming the time structure is not too dilated (pulse < 10ms)
- VCN neutrons could be practically useful up to a shift of a factor 3 in the wavelength spectrum.
 - Beware that neutrons are falling in the gravity field
 - \rightarrow challenge to achieve clean horizontal instrument measurements