WORKSHOP ON VCN AND UCN AT ESS

Moderator cooling at ESS

2022-03-02 | Y. BEßLER
WORKSHOP ON VCN AND UCN AT ESS

Content

1. Cryogenic Moderator System (CMS) overview
2. Liquid Hydrogen cryostat
3. Moderator & Reflector Plug (Twister)
4. First generation of para-Hydrogen Moderators (BF2)
5. Second generation of para-Hydrogen Moderator (BF1)
6. Draft design of ortho-Deuterium Moderator
WORKSHOP ON VCN AND UCN AT ESS

Content

1. Cryogenic Moderator System (CMS) overview
2. Liquide Hydrogen cryostat
3. Moderator & Reflector Plug (Twister)
4. First generation of para-Hydrogen Moderators (BF2)
5. Second generation of para-Hydrogen Moderator (BF1)
6. Draft design of ortho-Deuterium Moderator
WORKSHOP ON VCN AND UCN AT ESS

1. Cryogenic Moderator System (CMS) overview

TMCP+CMS schematic flow diagram

TMCP ca. 30 kW @20K

LH2 cryostat up to 1000 g/s pLH2

Up to 4 LH2 Moderators (baseline)
WORKSHOP ON VCN AND UCN AT ESS

1. Cryogenic Moderator System (CMS) overview

TMCP+CMS overall layout

Accelerator building

Target Station building

Ca. 30 m

Ca. 300 m
1. Cryogenic Moderator System (CMS) overview

Main parameters of the CMS

- Operating temperature: 17 to 20.5 K
- Operating pressure: 11 bar.abs at pump outlet
- Pressure control (11+/-1) bar.abs
- Design pressure: 17 bar.g (against insulation vacuum)
- Static heat load: ca. 6 kW
- Dynamic heat load: ca. 17.2 kW
- LH₂ mass flow 1000+-50 g/s
- Parahydrogen content ≥99.5%
- Pressure drop: 1.6 bar
- Inventory: ca. 26 kg H₂
WORKSHOP ON VCN AND UCN AT ESS

Content

1. Cryogenic Moderator System (CMS) overview
2. Liquide Hydrogen cryostat
3. Moderator & Reflector Plug (Twister)
4. First generation of para-Hydrogen Moderators (BF2)
5. Second generation of para-Hydrogen Moderator (BF1)
6. Draft design of ortho-Deuterium Moderator
WORKSHOP ON VCN AND UCN AT ESS

2. Liquid Hydrogen cryostat

Hydrogen cryostat 5x5x4m; up to 1000 g/s LH2 @ 20 K and 10 bar

“inside the cold box”

HighNESS is funded by the European Union Framework Programme for Research and Innovation Horizon 2020, under grant agreement 951782

Mitglied der Helmholtz-Gemeinschaft
WORKSHOP ON VCN AND UCN AT ESS

Content

1. Cryogenic Moderator System (CMS) overview
2. Liquide Hydrogen cryostat
3. Moderator & Reflector Plug (Twister)
4. First generation of para-Hydrogen Moderators (BF2)
5. Second generation of para-Hydrogen Moderator (BF1)
6. Draft design of ortho-Deuterium Moderator
WORKSHOP ON VCN AND UCN AT ESS

3. Moderator & Reflector Plug (Twister)

Twister
- Height 6.5 m
- Total weight 13,000 kg
- Life time @5MW 1-2 Years

Moderator & Reflector Plug „Twister“

Target wheel

Neutron beam extraction

Proton Beam
3. Moderator & Reflector Plug (Twister)

- Lower plug empty in first generation
- Available for Moderator upgrades

Upper Moderator & Reflector

Outer SS reflector

“Twister” assembly
WORKSHOP ON VCN AND UCN AT ESS

Content

1. Cryogenic Moderator System (CMS) overview
2. Liquide Hydrogen cryostat
3. Moderator & Reflector Plug (Twister)
4. First generation of para-Hydrogen Moderators (BF2)
5. Second generation of para-Hydrogen Moderator (BF1)
6. Draft design of ortho-Deuterium Moderator
WORKSHOP ON VCN AND UCN AT ESS

4. First generation of para-Hydrogen Moderators (BF2) – upper Moderator Plug

Cold Moderators
(para-Hydrogen @20K
Mass flow 2x240 g/s
Heat ca. 2x3.5 kW)

Thermal Moderator
(light water)

Irradiation module

Pre-Moderator
(light water)
WORKSHOP ON VCN AND UCN AT ESS

4. First generation of para-Hydrogen Moderators (BF2) – upper Moderator Plug + Twister

Thermal Moderator

Para-Hydrogen Moderators

Cutout for Target wheel

2 x 120° beam extraction (both sides)

Beryllium Reflector (above the Moderators)
WORKSHOP ON VCN AND UCN AT ESS

Content

1. Cryogenic Moderator System (CMS) overview
2. Liquid Hydrogen cryostat
3. Moderator & Reflector Plug (Twister)
4. First generation of para-Hydrogen Moderators (BF2)
5. Second generation of para-Hydrogen Moderator (BF1)
6. Draft design of ortho-Deuterium Moderator
5. Second generation of para-Hydrogen Moderator (BF1)

Up to 30% brightness gain for some beam lines (e.g. NMX, BEER)

BF1 Moderator vs. BF2 Moderator

First generation

Second generation

HighNESS is funded by the European Union Framework Programme for Research and Innovation Horizon 2020, under grant agreement 951782
WORKSHOP ON VCN AND UCN AT ESS

5. Second generation of para-Hydrogen Moderator (BF1)

≈1l para LH$_2$ volume
Mass flow 400 g/s
Heat 7.1 kW

NDT of first prototype

First prototype

HighNESS is funded by the European Union Framework Programme for Research and Innovation Horizon 2020, under grant agreement 951782
WORKSHOP ON VCN AND UCN AT ESS

Content

1. Cryogenic Moderator System (CMS) overview
2. Liquide Hydrogen cryostat
3. Moderator & Reflector Plug (Twister)
4. First generation of para-Hydrogen Moderators (BF2)
5. Second generation of para-Hydrogen Moderator (BF1)
6. Draft design of ortho-Deuterium Moderator
6. Draft design of ortho-Deuterium Moderator – neutronic model

First model

- ca. 34L liquid ortho-Deuterium
- Pre-Moderator 25 mm H2O
- Be reflector, water cooled
- Heat load = 56.6 kW
- Pressure = 5 bar
- Mass flow = 3.4 kg/s
- Temperature = 22.5 K

- orange: steel (twister frame, inner shielding, etc),
- dark blue: liquid ortho-deuterium,
- blue: light water,
- light blue: beryllium,
- green: aluminum.
WORKSHOP ON VCN AND UCN AT ESS

6. Draft design of ortho-Deuterium Moderator – first engineering optimizations

Cold Neutrons

Fluid guides

Cold Be-Filter

Cold Neutrons

Fast Neutrons

Pre-Moderator (light water)

LD2

Be-Reflector (water cooled)

Vacuum jacket

the small filter will probably be replaced
WORKSHOP ON VCN AND UCN AT ESS

6. Draft design of ortho-Deuterium Moderator - Dimensions

Proton beam channel

Dimension: Ø740 mm, t=400 mm
6. Draft design of ortho-Deuterium Moderator – Twister Integration

Cryo pipes + vacuum jacket
ESS HIGHNESS – WP5 ENGINEERING

Summary & outlook

• There are various ways of integrating the new Moderator concepts into the existing Target Station / Twister

• The Deuterium Moderator in the lower moderator plug, maybe in combination with a VCN, seems feasible

• For reasons of coolability, the UCN must be placed further away from the source

• The existing cryogenic infrastructure must be significantly upgraded due to the parallel operation with Hydrogen and the enormous heat input

• Additional building for the Deuterium Cryostat seems to be required

• Considerable costs for an additional TMCP, for cryo transfer lines, etc. must be taken into account

• Especially for the planned UCN, there is no infrastructure at all near the Target Station at the required temperature level