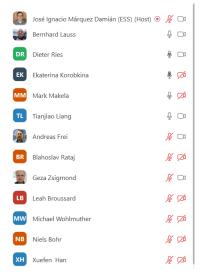
Outcome: WG2 UCN Source

-

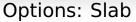
Solid deuterium based

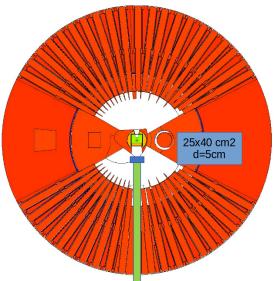
Dieter Ries d.ries@uni-mainz.de https://ucn.uni-mainz.de


ESS HighNess UCN/VCN 02/2022

February 4, 2022

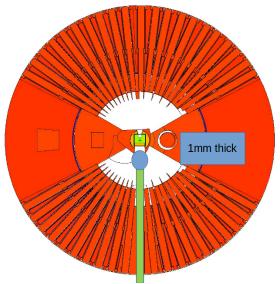
Working Group 2

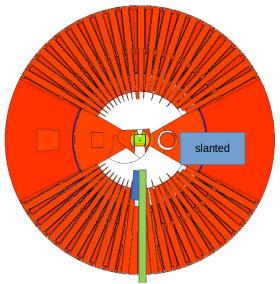

Location / Geometry of a sD₂ UCN source


WORKSHOP ON VCN AND UCN AT FSS 6. Draft design of ortho-Deuterium Moderator –neutronic model WP4 model, ESS First model Upper Bervllium Reflector Moderator ca. 34L liquid ortho-Deuterium Hydrogen Moderator Plua Pre-Moderator 25 mm H2O Pre-Moderator · Be reflector, water cooled Protons Target Heat load =56.6 kW Pressure =5 bar New LD2 Moderator Mass flow =3.4 kg/s Lower Temperature =22.5 K Moderator Plua - orange: steel (twister frame, inner shielding, etc), - dark blue: liquid ortho-deuterium. - blue: light water - light blue: beryllium. green: aluminum. HighNESS is funded by the European Union Framework Programme for Research and Innovation Horizon 2020, under grant agreement 951782

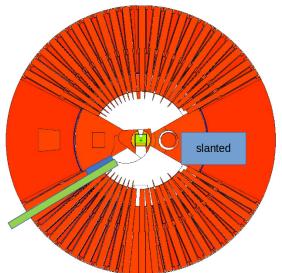
- sD₂ in/close to cold moderator / twister / MCB unrealistic
- heat load at PSI, LANL, FRM II: 400, ..., 500W @5K

Mitglied der Helmholtz-Gemeinschaft




Options: Thin film

Location/Geometry Source Characteristics Transport Infrastructure / Radiation Data Summary


Options: Slanted

Location/Geometry Source Characteristics Transport Infrastructure / Radiation Data Summary

Options: Slanted

Location / Geometry of a sD₂ UCN source

- Between NN port / beamport and cold moderator
- Large surface area
- Position: tradeoff between flux and heat load
- Shape: Slab type (like LANL/PSI/FRM) or "thin film" sphere
- Possibly slanted slab, but extraction under angle
- Needs engineering study / flux calculations
- Possible heat shield / shutter
- Structural beryllium vs aluminum?
- Cold beam outside: Likely rather *l*He

Source Characteristics

- CW operation
- High Flux
- High UCN density in source + guide

- Large production surface necessary
- UCN extraction guide diameter can be smaller
- 250mm inner diameter or less possible
- D₂ Fermi-potential: 100 neV helps, 1 m rise outside
- high efficiency transport already demonstrated, e.g.
 - FRM II
 - PSI
 - LANL

Infrastructure / Radiation safety

Infrastructure:

- Helium cooling plant necessary
- Deuterium handling coldbox etc
- Plumbing horizontal, space constraints likely no issue (PSI: similar size D2 crystal, all support in 100mm tube)

Infrastructure / Radiation safety

Infrastructure:

- Helium cooling plant necessary
- Deuterium handling coldbox etc
- Plumbing horizontal, space constraints likely no issue (PSI: similar size D2 crystal, all support in 100mm tube)

Radiation safety:

- 1 m rise outside bunker
- beamdum in the horizontal plane
- ${}^{3}\text{He} \rightarrow {}^{3}\text{H}$ in cooling: Same as cold source

Necessary tools / data

- UCN MC exists and in good shape
- UCN production in sD₂: from cold flux
- Cold flux data necessary!
- Heat load data necessary!

Summary

- sD_2 UCN source possible in $N\bar{N}$ port / beamports
- closer to cold moderator: Heat load tradeoff
- Transport feasible
- Infrastructure horizontal/outside feasible
- Simulation tools OK
- Need cold neutron flux and heat load data!