HighNess

General HighNESS Meeting WP4 Neutronic Studies of In-Pile and In-Beam UCN-Sources

Wagner, Richard, Institut Laue-Langevin 21.06.2022, ESS, Lund

HighNESS is funded by the European Framework for Research and Innovation Horizon 2020, under grant agreement 951782

THE EUROPEAN NEUTRON SOURCE

Motivation

HighNess

Workshop on Very Cold and Ultra Cold Neutron Sources for ESS

2-4 February 2022 Europe/Stockholm timezone

Scientific Programme Committees Call for Abstracts Timetable Contribution List Registration

Surveys Proceeding

Contact
valentina.santoro@ess.eu

- Outcome of working groups: Recommendations for UCN Sources based on:
 - → Superfluid Helium
 - ➔ Solid Deuterium
- V. Nesvizhevsky contribution:

"Production of ultracold neutrons in a decelerating runaway trap"

Utilizes the pulse structure of the ESS

Ultra Cold Neutrons

General definition: •

> UCNs are neutrons whose energy is so low that they are reflected under any angle of incidence

can be contained in traps

- UCNs are important tools for fundamental physics experiments as:
 - Neutron lifetime measurements
 - Neutron Dipole Moment
 - Gravitational interactions
 - \rightarrow n-n and n-n' oscillations

FUROPEAN NEUTRON SOURCE THF

Ultra Cold Neutrons II

One possibility: UCN production in superfluid Helium

UCN Objectives in WP4

- Task 4.3. Neutronic study of in-beam UCN
 - → design of a UCN converter placed at the monolith exit
- Task 4.4. Neutronic study of in-pile UCN
 - the study of a UCN source placed inside the ESS monolith

UCN Objectives in WP4

- Task 4.3. Neutronic study of in-beam UCN
 - design of a UCN converter placed at the monolith exit
 - Task 4.4. Neutronic study of in-pile UCN
 - \checkmark the study of a UCN source placed inside the ESS monolith

UCN Source Locations In-Pile

1) Inside Twister

- 2) In Moderator Cooling Block (MCB)
- 3) In Large Beam Port (LBP)
- 4) In Standard Beam Port

Flux Map in Monolith

Heat Load on UCN Test Source

Cylinder R=10cm, H= 20cm, wt and wtout a 5cm Bismuth shell

UCN In-Pile - Model Serebrov I

UCN In-Pile - Model Serebrov II Flux

UCN Source In-Beam Option

UCN Source In-Beam Option

- Need a neutron delivery system with high brilliance transfer from moderator to UCN source, with largest technically possible solid angle
- Neutron imaging from the moderator to the UCN source via the arrangement of nested mirrors has been identified as possible solution

Outlook

- Creation of detailed Flux maps for superfluid Helium Source
- Refinement of the UCN sources in the Beam ports; Study different reflector materials
- Work out detailed UCN production rates
- Exploring solid deuterium option
- McStas Simulations for in-beam option

Thank you for our attention!

HighNESS is funded by the European Framework for Research and Innovation Horizon 2020, under grant agreement 951782

INSTITUT LAUE LANGEVIN

THE EUROPEAN NEUTRON SOURCE