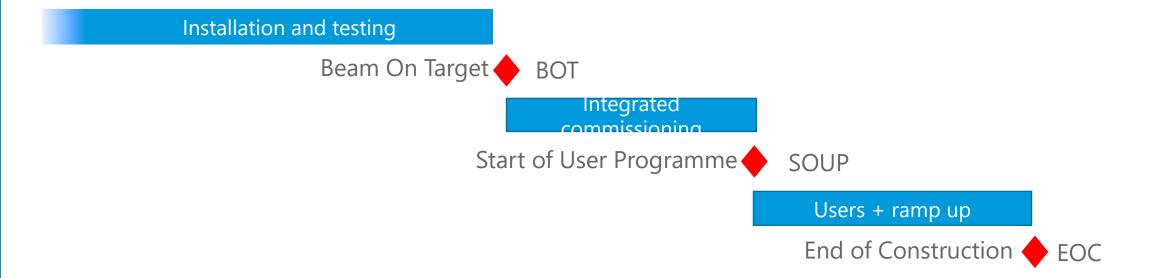

Integrated Commissioning Strategy and Plan

Big Science Business Forum ²⁰²2

ESS Overview



High Level Schedule Milestones

2022	2022	2024	2025	2026	2027	2020
2022	2023	2024	2025	2026	2027	2028

Baseline dates

Key ESS milestone dates and definitions

Mllestone	Baseline date	Current estimate	Definition*	
ВОТ	19 Nov 2024	6 May 2025	First protons on target	
SOUP	30 Apr 2026	29 Oct 2026	Operating power above 0.57MW Availability 80% 3 instruments in User Program	
EOC (End of Construction)	31 Dec 2027	31 Dec 2027	Accelerator 2MW capable, with separate demonstration of • Duty factor (14Hz, 2.86ms) • Beam energy of 800MeV • Nominal current (62.5mA) • Source power > 1MW, reliability 80% Nominal neutron production efficiency (@570MeV) 15 instruments installed 10 instruments in User Program User Program infrastructure in place	
te that current estim	nate is a live value an	d affected by any ongoi	Trained staff, operating permits, system documentationuncil/27/05.c (meeting 28 Feb – 1 March 20	122

Project Confluence at BOT

Accelerator low power sioning to dump

Target pre-beam tests

Instrument cold commissioning

BEAM ON TARGET (BOT) **Accelerator high power commissioning to target**

Target monitoring and parasitic tests

Instrument hot commissioning

BOT and Beyond

At BOT

- Accelerator should be ready to produce at least 570MeV beam (demonstrated to dump)
 - Commissioning of the Dogleg and A2T sections of transfer lines will be done after BOT
- Target should be completely tested to receive beam
 - Readiness for 5MW beam at BOT is planned
- Bunker and Neutron Instruments need to be ready to receive beam on target
 - Since there are no heavy shutters, this means all instruments that do not have at least all their shielding and safety systems in place will need temporary shielding and/or plugs.
 - At least the test beamline operational

After BOT

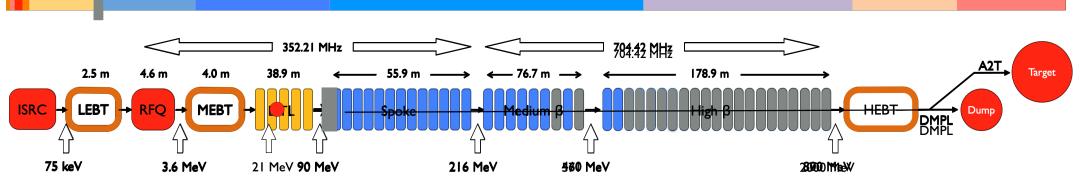
- Remaining commissioning need to be coordinated (in particular between accelerator and neutron instruments, target has no foreseen dedicated tests after BOT)
- Remaining installations need to be coordinated and scheduled

Required proton beam currents

ess

At nominal rep rate and pulse length

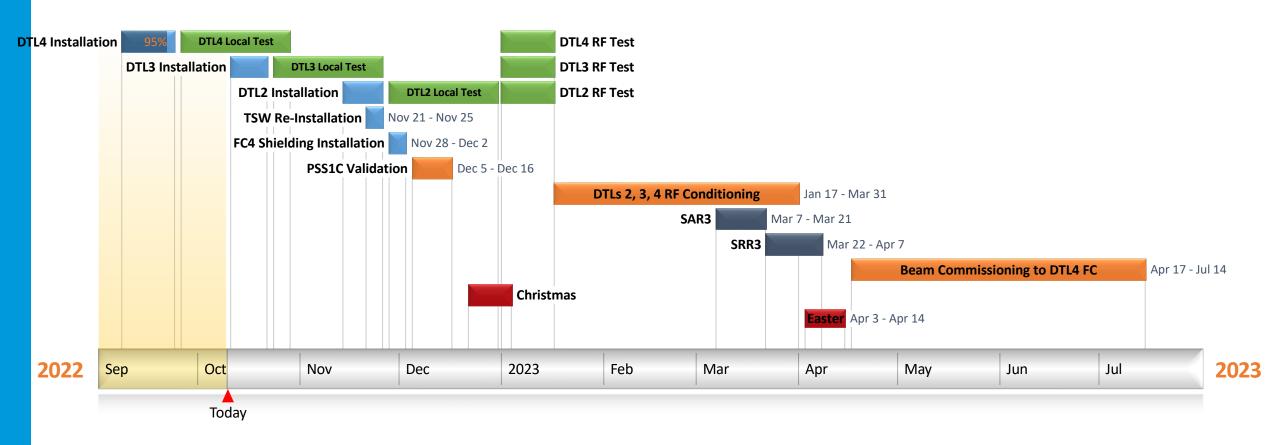
Energy	Power	Current
570 MeV	0.57 MW	25mA
800 MeV	0.57 MW	18mA
800 MeV	1 MW	32 mA


* Nominal current 62.5mA

Note: Beam power is the product of

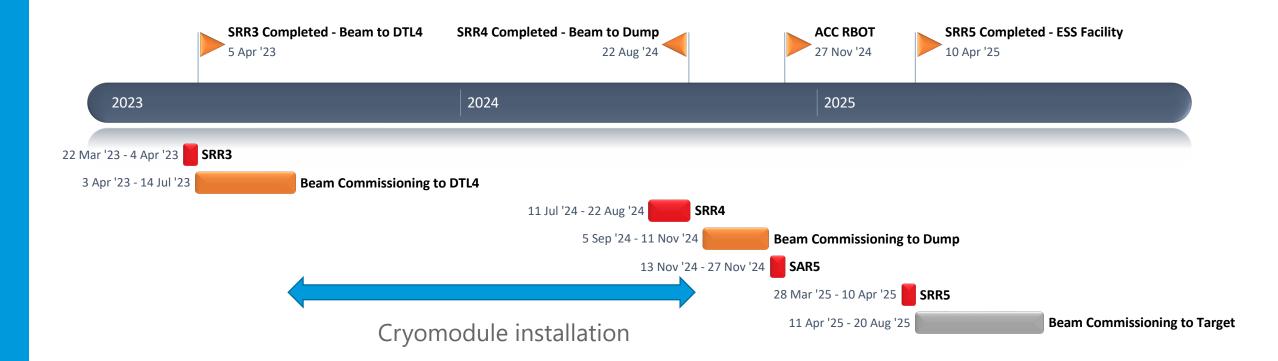
- pulse length (5-2860us) determined by users
- beam current (5-62.5mA) determines beam dynamics
- rep rate (0-14Hz) our main knob on losses

Accelerator Commissioning

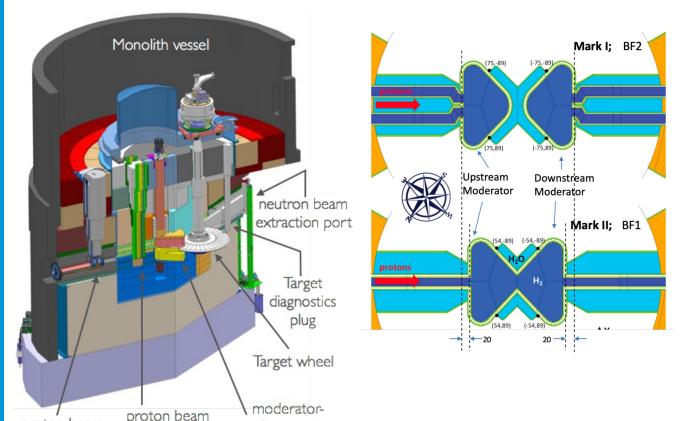

SRR4 (to TBD)

SRR5

2018 2019 2020 2021 2022 2023 2024 2025


NCL Near Term Plan

Accelerator Timeline


Target

instrumentation

plug

proton beam

window

Target luminescent coating

Target is planning for full 5MW readiness by BOT.

reflector plug

- Only one moderator installed initially, and not the final design
- Proton beam window may need replacement before EOC.
- Detailed plan for first beam on target being drawn up
- Luminescent coating allows measurement of beam position and distribution on target

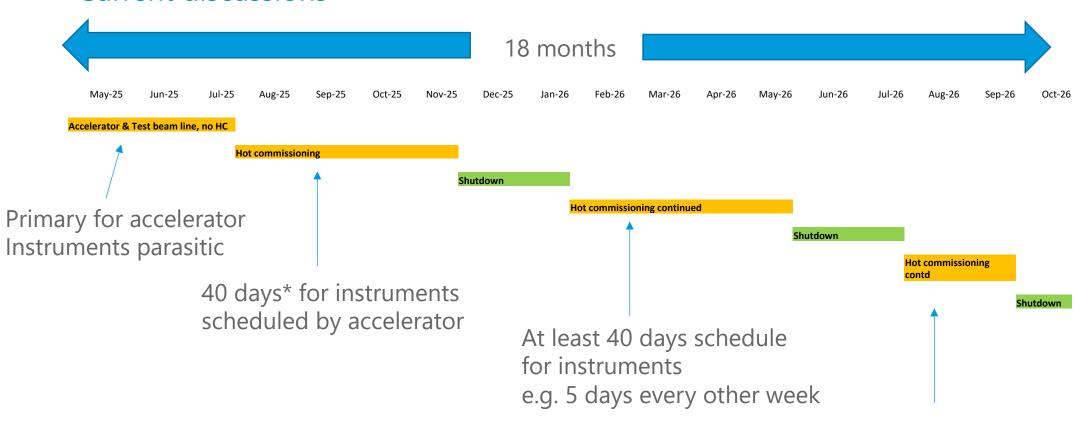
Instrument Commissioning Plan

Estimates as of August 2022 – with BOT in Q2 2025

	2022	2			2023	3			2024				2025				2026				2027	7		
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
LoKI						TG5																		
SKADI															TG5									
Estia										TG5														
FREIA																TG5								
NMX										TG5														
DREAM								TG5																
MAGIC													TG5											
HEIMDAL																	TG5							
CSPEC														TG5										
T-REX																		TG5						
BIFROST								TG5																
MIRACLES																TG5								
VESPA																		TG5						
ODIN						TG5																		
BEER									TG5															
TBL																								
The timeline	shov	ws:																						

	Design, construction, and cold commissioning	BOT
	Safety readiness checks and approvals	
	Hot commissioning (testing and validation with neutrons) and Early Science	ence
	User programme	

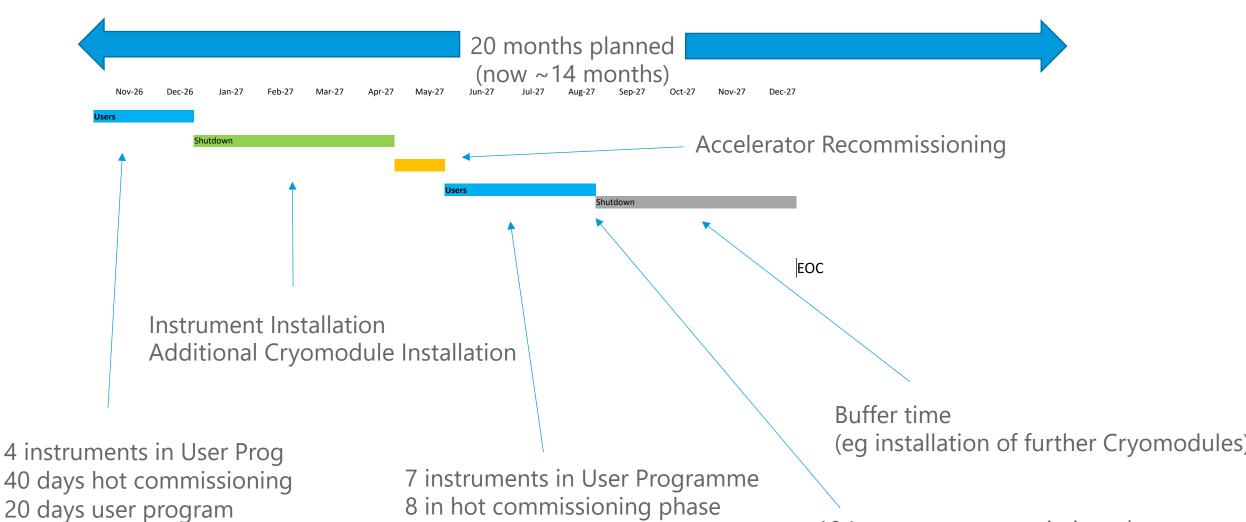
SOUP


NSS commissioning is very parallisable, but not everything can be done at the same time

12

From BOT to SOUP

Current discussions


At least 40 days scheduled for instruments
Up to 10 days per fortnight

*Instrument day defined as 8 hours of beam in 24 period

From SOUP to EOC

Current discussion

2022-10-10 PRESENTATION TITLE/FOOTER

10 Instruments commissioned

Conclusions

- First Beam on Target will be a major milestone for the project (albeit perhaps not the most important one for the stakeholders).
- Planning for sending first beam to target is ongoing.
- Following BOT, commissioning activities and remaining installation work will need to be coordinated to a joint schedule. We have a skeleton for such a schedule.
- Post BOT, subprojects mainly need to integrate commissioning time. There are relatively few interdependencies. This means that shutdowns can be locked in time, simplifying installation planning. Any remaining commissioning or installation activities can simply be moved to the next beam or shutdown window. Likewise, commissioning activities can be performed early when possible.
- There is a clear understanding that Neutron Instruments prefer stability over power. If the accelerator power ramp-up is slower than expected, the beam power for hot commissioning and initial user program will be adjusted to optimize for stability.

backup