

EUROPEAN SPALLATION SOURCE

ICS approach to commissioning

Integrated Control System

HECTOR NOVELLA, TIMO KORHONEN

2022-10-10

Outline

ICS approach to commissioning

- 1. About ICS
- 2. Approach to commissioning
- 3. Challenges
- 4. Up for debate questions
- 5. Summary

80000	
40000	
8	
20	
Ĩ	

About the Integrated Control System

ICS in-kind partners

The ESS integrated control system Overview

The ESS facility is a large and complex machine with very much and diverse equipment that needs to work in synchronization and with well-known configurations

The Integrated Control System Division is responsible for the control systems within the ESS facility including controls for

- Accelerator
- Target
- Neutron Scattering Systems
- Conventional Facilities

In addition, ICS will implement

- Machine Protection System
- Personnel Safety System

To build a distributed control system of this size is a major undertaking

VR model of the ESS Main Control Room

Layered Architecture of ESS Control Systems

2

Approach to commissioning

ESS Management System

ESS Engineering Management

- All ESS facility systems must adhere to the <u>ESS</u> <u>Management System</u>
- The ESS Management System contains several "Ways of Working (WoW)"
- The <u>Develop & Maintain Facility</u> WoW outlines the process for developing a system.
- The process is defined in the "ESS Handbook for Engineering Management" [ESS-0092276].

Life cycle of an ICS control system with respect to parent system

 ICS division has customised this process specifically for control system development in our "ESS Handbook for Engineering Management of Control Systems" [ESS-0054678]

ESS Engineering Management for ICS

Key deliverables & reviews required

ess

- Control system (HW + SW)
- Documentation
 - System Engineering Management Plan (SEMP)
 - Interface Control Document (ICD)
 - System Requirements Specification (SRS)
 - System Design Document (SDD)
 - Verification Plan / System Integration Plan (SIP)
 - Verification Plan / Test specifications
 - Test reports
- Reviews
 - Preliminary Design Review (PDR)
 - Critical Design Review (CDR)
 - Test Readiness Review (TRR)
 - System Acceptance Review (SAR)
 - Safety Readiness Review (SRR)
 - Operational Readiness Review (ORR)

Controlled documents are managed in CHESS (corporate tool for doc. mgmt.)

Documents are typically reviewed by stakeholders (designated responsible): parent system owner, owners of interfacing systems, group leader, chief engineer, project manager

Reviews typically consist of a committee of engineers (both internal and external to ICS division) who assess the key deliverables and probe the design and project plans, in order to answer a set of charge questions.

Scheduling example

Planning with systems engineering in mind

To consider:

- Definition of readiness
- Interfaces and dependencies

- Handover (operational support)
- Maintenance (bug fixes and upgrades)

V Layout: HN_Classic_Schedule_Layout Filter: All Ac		AllActivities	Ivities																					
Activity Type Activit		Activity ID	Activity Name	Start	Finish	^	L		2022			2023				2024				2025				
							24	4 Q1	Q2	2 Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
= W	/BS: 1	14-ICS-Live.5	Machine protection system	m 01-Jan-13 A	31-Dec-2	7			i i												1.1			
÷	WBS:	14-ICS-Live.5.0 M	anagement and Administration																					
(+	WBS:	14-ICS-Live.5.1 M	PS Contributions				н.				E.													
+	WBS:	14-ICS-Live.5.2 M	PS In-Kind				н.																	
+	WBS:	14-ICS-Live.5.3 M	P-SoS				н.				1													
Ŧ	WBS:	14-ICS-Live.5.4 M	PS PLC based systems				II	en ene						1.111										a acada
	WBS:	14-ICS-Live.5.5 M	PS FPGA based systems	07-Jan-15 A	24-Jun-2	4									111		11	24-	Jun-2	24, WI	BS: 1	4-ICS	-Live.	5.5 M
÷	WB	S: 14-ICS-Live.5.5.1	Fast beam interlock system	07-Jan-15 A	24-Jun-2	4		12						(E	BCL	1	F 284	Sunsá	Bay Vol	BSDT	4-ICS	-Live.	5.5.1
=	WB	S: 14-ICS-Live.5.5.2	LPS for raster magnets	01-Jun-16 A	02-May-2	24			뉴님		1.1.1		222	13-1	1-1-1-	1 Hala	7 ()2-Ma	y-24,	WBS	: 14-1	CS-Li	ve.5.5	2 LP
	11	ICS-A2146940910	FIST - Preliminary Design for SCL	10-Jan-22 A	30-Mar-2	3			1-1-1			1 - C - I -	FIS	T - P	relimin	ary De	sign	for S	CL		111	111	111	1-1-1-1
	1	ICS-A2146940920	FIST PDR SCL	31-Mar-23								•	FIS	T PD	RSCL				111	111	111	111	111	1111
	1	ICS-A2146940930	FIST- Detailed Design for SCL	31-Mar-23	29-Jun-2	3					11	111		FIS	T-De	tailed	Des	ign fo	r SCL		111	111	111	111
	1	ICS-A2146940940	FIST CDR SCL	30-Jun-23										+ FIS	T CDI	R SCL	11		111	111	111		111	111
	1	ICS-A2146940950	FIST Realisation HW and SW for	SCL 30-Jun-23	19-Dec-2	3			H			: : :				FIST	Rea	lisatio	n HW	and	SW f	or SC	6	
	1	ICS-A2146940960	FIST Quality checks for SCL	20-Dec-23	05-Feb-2	4			11		135			111	1111	F F	STO	Quality	che	cks fo	r SCL	-11		111
	1	ICS-A2146940970	FIST Verification and Validation for	or SCL 06-Feb-24	01-May-2	24								111	111		F	IST V	erific	ation	and \	/alida	tion fo	r SCL
	1	ICS-A2146940980	FIST ready for BoT	02-May-24											111	88	ŧ.	IST re	eady	for Bo	T	111	111	111

ess

Software Tools

To support Commissioning

Controls Configuration

- Naming service (Naming Convention)
- Cable database
- Controls Configuration Database (Management of Devices, Properties & Relationships)
 - Will be replaced, keeping the "configuration" capability
- CCCE (IOC deployment tool)
- IOC Factory (will evolve to adapt to CCDB)
- E3 (ESS EPICS Environment)
- Operation support
- Alarm service
- Archiver
- Control System Studio Phoebus
- OLOG (electronic logbook)

Miscellaneous tools

- Calibration Service (prototype during commissioning)
- Operation Sequencer (prototype)
- Synchronous Data Service (prototype)
- Software Interlock
- SuperCycle Tool
- Public Operation Screens
- ESS Notify (Smartphone app)

Continuous Integration / Continuous Deployment tools

Infrastructure as a Service

3

Challenges

ICS challenges

General to the Construction phase of the project

Team expansion

 Growing up the team from a few people to over 100 people now, and keeping the development from diverging.

Inner-resilience

- Trying to cope with changes in the surrounding organization.
- New things come up that were not known, and adjusting our developments to that (examples: Enterprise Asset Mgmt, CHESS [doc.mgmt., Facility Breakdown Structures], Identity Access Mgmt.; these all have resulted in significant changes in the implementation plans)

Common platforms

 Trying to converge the different approaches and requirements of different divisions (ACC,TG,NSS), and create systems that serve all.

Forefront technology

 Taking up a still relatively new technology of MTCA and dealing with all the complexities.

ICS commissioning Challenges

Ways of Working during transitions

- Adjusting from development phase (large freedom) to operation (limited freedom).
- Balance between fixing issues quickly and achieving a stable status.

Parallelization

 Stakeholder's activities are accumulating and running in parallel, this creates challenges related to everything being under construction at the same time.

User engagement

- Learning curve with our tools, both for ICS staff and users of our tools. Mix of training and knowledge transfer.
- For example, learning how to make best use of the archiver, setting up alarms (not quite there yet), etc.

Interfacing new stakeholders

 Finding a good way to support and cooperate with operations.

4

Questions to debate

insights from J-PARC are most welcome ©

Topics for discussion (1/2)

- Archiving, data storage and retention policies, or networking challenges found during commissioning and of Accelerator / Target / Neutron Instrument systems. How have the systems evolved after commissioning?
- General status in regards to EPICS deployment. Most common (EPICS) version in use? How have you evolved since commissioning? (For target & neutron instruments: are you using EPICS to control your systems?)

- Fast/high data volume/beam synchronous acquisition, what has happened at J-PARC in the last 3 years?
- How do you communicate with other parts of the Machine (e.g. Accelerator + Target commissioning preparations)
- What is the support required from controls to moderator or neutronics commissioning activities? What about the involvement of controls with regards to activated materials?

insights from J-PARC are most welcome ©

Topics for discussion (2/2)

- How are neutron instruments integrated (=controlled)? Is there a committed team for each instrument or a central support team?
- What was the process of building and commissioning the instrument suite at J-PARC? How long did it take, how was the controls team organized?
- What about detector controls integration and maintenance?
- How is neutron instrument data acquisition and storage done? i.e. through a common data storage approach or individual handling for each instrument.

- What are your impressions about beam presence during commissioning? How the different commissioning teams knew there was beam? i.e. from source to sample, how the instruments know when a pulse is coming? Can their data be correlated / linked to a given pulse?
- What about cybersecurity? Did you have any issues, any advice you could share? Did you allow remote/external access? How do you handle your users (neutron science researchers)?
- Do you have an on-call service for controls?

Summary ICS approach to commissioning

- Directorate with more than 100 people in four groups.
- ICS as a project in its Construction phase delivers an integrated control system for the Accelerator, Target, NSS suite of instruments, and also Machine Protection and Personnel Safety.
- ICS has tailored ESS Ways of Working to the delivery of control systems and related tools and platforms. This is also reflected in its project schedule.

- Commissioning of ICS' core systems (e.g. Technical Network, software platforms, Timing Distribution) relies mostly on ICS.
- Commissioning of control systems for stakeholders is embedded in their (sub-)system lifecycles.
- ICS faces challenges derived from the complexity of the machine, the project size and challenges specific to commissioning.
- ICS would like to have an open dialogue during this workshop with all areas participating from J-PARC

Thank you!

