

Moderator and Reflector Plug (MRP) Verification

Commissioning Workshop

Verification Strategy

- Concept Verification, e.g. electro beam welding
- Prototype Verification, e.g. cold moderator burst test
- Quality, according to ESS RESSQ-Mech
- FAT, e.g. functional dimensions, cold test, pressure and leak test, pressure drop, rotation, etc.
- MUTS, integration with Target Wheel
- Monolith, final integration

Concept Verification

Electro Beam Welding Qualification

2016.12.05 Y. Beßler

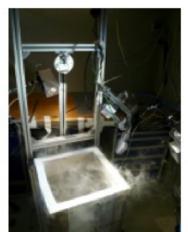
WPQR of Moderator & Reflector Plug

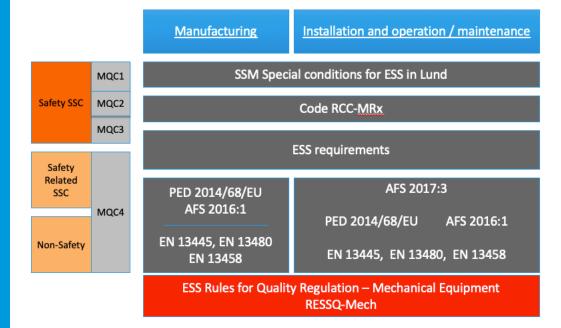
Electron beam welding qualification for the ESS Moderator & Reflector Plug.

Component	Cold Moderator	Thermal Moderator	Beryllium Reflector						
Drawing number	212-000207	212-001135	212-000956						
Standard	EN ISO 15614-11								
Welding test	-due to the complexity of the weld path, full welding test of cold Moderator vessel -manufacturing and welding of 1 full additional vessel, -3 test vessels, machined in 2016	upper part: flat sheets with 3 mm thickness 200 mm x 100 mm including filler, butt welded (replacement of cover weld acc. 15614- 11) water disc (x5): Original geometry with reduced diameter D=100	-flat sheets with 5 mm thickness 200 mm x 100 mm including filler, butt welded (replacement of cylindrical weld acc. 15614-11)						
Number of test	4	5/5	5						
	Welding with supervision	by TÜV Reihnland	78						
examinations	-visual inspection - dye penetration test -CT -burst test (4x) - Cut images from critical positions (selected by TÜV) and Microscopic examination	-visual inspection - dye penetration test -CT -tensile test (x5) - Cut images from critical positions (selected by TÜV) and Microscopic examination	-visual inspection - dye penetration test -CT -tensile test (x5) - Cut images from critical positions (selected by TÜV) and Microscopic examination						
	examination with supervision by TÜV Reihnland								
quality class		espectively N2 _{RX} (acc. RCC-M	0000						
Material	6061-T6	6061-T6 / 5754	6061-T6						
Filler material	4047	4047	4047						

Prototype Verification

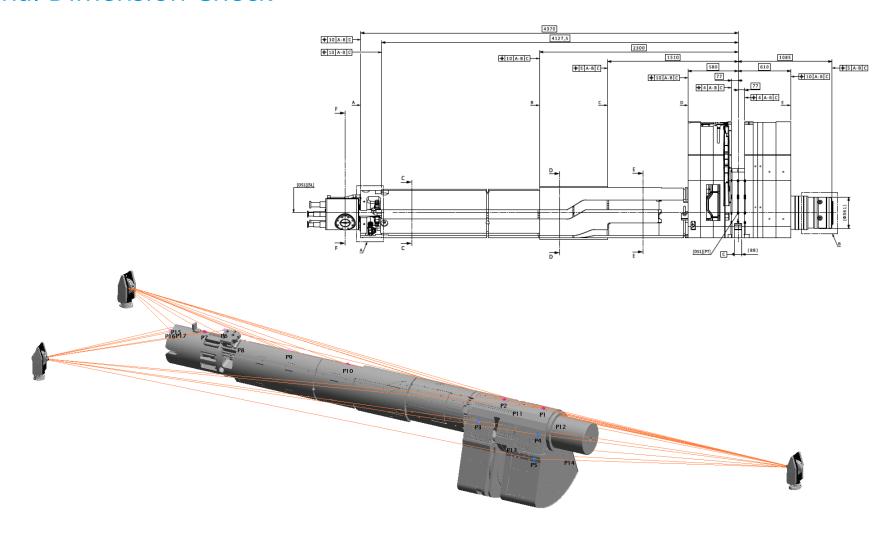
Burst Test of Cold Moderator





31

Quality RESSQ-Mech



FAT

ess

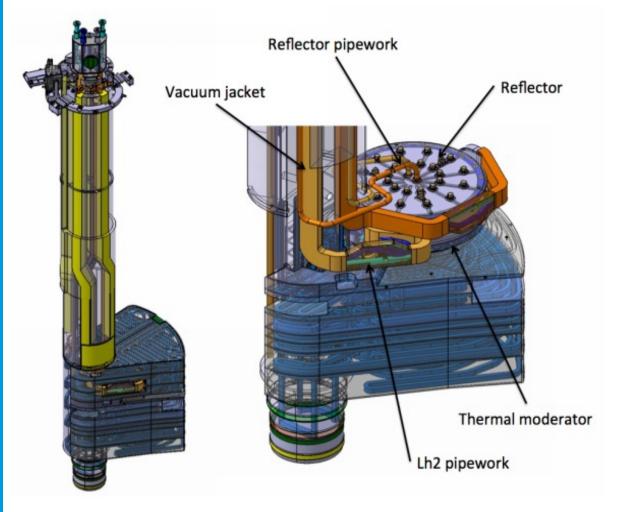
Functional Dimension Check

1000.0 mm

FAT

Cold Test with LN2

ess


Test Report Twister

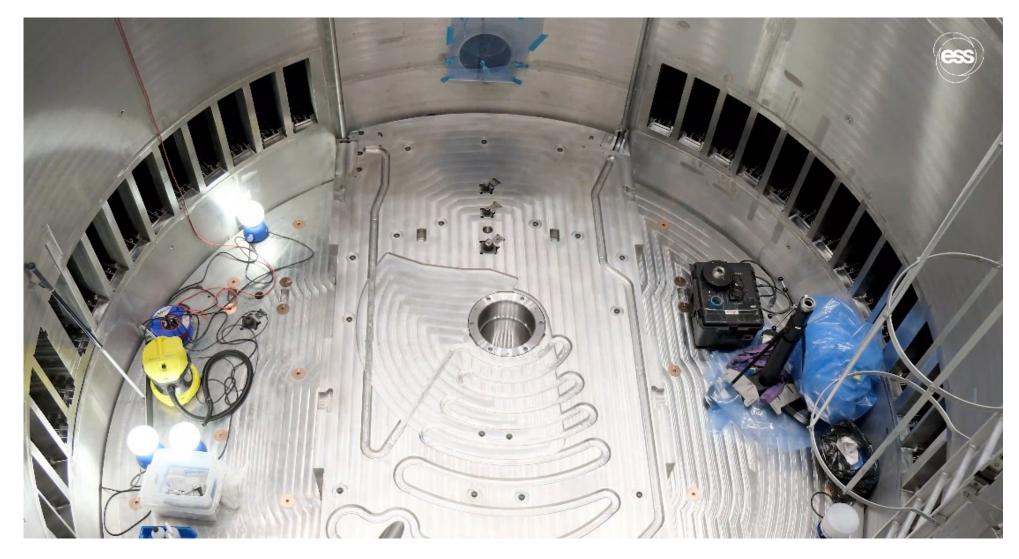
[mbar*l/s]		Cold Mo. in/out loop 1	Cold Mo. in/out loop 2	Upper Frame in/out	Lower Frame in/out	Shaft+Foot+ Lower Mounting Socket in/out	Thermal Mo. 1 in/out	Frame Insert in/out	Be Reflector in/out	Thermal Mo. 2 in/out	Shaft + PB channel + Upper Mounting Socket in/out	Vacuum jacket
Mass Flow [kg/s] 0.240 0.240 1.0 1.2 1.6 1.0 0.2 0.8 1.0 0.8 Diameter [mm] 21/25 21/25 23/28 23/28 23/28 20/25.4 23/28 23/28 20/25.4 23/28 23/28 20/25.4 23/28 Pressure [bar] 10 10 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Nr.	1.1	1.2	2	3	4	5	6	7	8	9	
Diameter [mm] 21/25 21/25 23/28 23/28 23/28 20/25.4 23/28 20/25.4 23/28 23/28 20/25.4 23/28 23/28 20/25.4 23/28 23/28 20/25.4 23/28 23/28 20/25.4 23/28 23/28 20/25.4 23/28 23/28 20/25.4 23/28 23/28 20/25.4 23/28 23/28 20/25.4 23/28 23/28 20/25.4 23/28 23/28 20/25.4 23/28 23/28 23/28 20/25.4 23/28 23	Media	LH ₂	LH ₂	H₂O	H ₂ O	H₂O	H₂O	H ₂ O	H₂O	H ₂ O	H ₂ O	
Pressure [bar] Design pressure [17	Mass Flow [kg/s]	0.240	0.240	1.0	1.2	1.6	1.0	0.2	0.8	1.0	0.8	
Design pressure 17	Diameter [mm]	21/25	21/25	23/28	23/28	23/28	20/25.4	23/28	23/28	20/25.4	23/28	
[bar] Test pressure (1.43*pD) pabs [bar] Measured by E. Rosenthal Leak rate req. [mbar*1/s] Signar Sign		10	10	4	4	4	4	4	4	4	4	
pressure (1.43*pD) pabs [bar] Measured by E. 25.44 Rosenthal 25.44 25.6 8.22 8.2 8.15 8.4 8.3 8.15 8.2 Leak rate req. ≤1.10-9 ≤5.10-8 ≤5.10-8	• .	17	17	5	5	5	5	5	5	5	5	
Rosenthal '	pressure (1.43*pD)	25.31	25.31	8.15	8.15	8.15	8.15	8.15	8.15	8.15	8.15	
[mbar*l/s]	•	25.44	25.6	8.22	8.29	8.2	8.15	8.4	8.3	8.15	8.2	
	Leak rate req.	≤1·10 ⁻⁹	≤1·10 ⁻⁹	≤5.10-8	≤5·10 ⁻⁸	≤5·10 ⁻⁸	≤5·10 ⁻⁸	≤5.10-8	≤5·10 ⁻⁸	≤5·10 ⁻⁸	≤5·10⁻8	N.N.
		≤1·10 ⁻⁹	≤1·10 ⁻⁹	≤1·10 ⁻⁹	≤1·10 ⁻⁹	≤1·10 ⁻⁹	≤1·10 ⁻⁹	≤1·10 ⁻⁹	≤1.5·10 ⁻⁸	≤1·10 ⁻⁹	≤1·10 ⁻⁹	≤1.10-8

Cold Mo. in/out loop 1

Here we are

MUTS

To be done



Monolith

To be done

Finish presentation