

Overview of ESS Instruments

PRESENTED BY ANDREW JACKSON // GROUP LEADER INSTRUMENT SCIENTISTS // ACTING HEAD NEUTRON INSTRUMENTS DIVISION

2022-10-10

ESS is designed to be world leading

ess

2²

ess

33

ESS is designed to be world leading

44

Upgrade to 5MW will provide flux advantage to current and future instruments

Neutron Instruments

Andersen, K. H.; Argyriou, D. N.; Jackson, A. J. et al. The Instrument Suite of the European Spallation Source. *Nuclear Instruments and Methods in Physics Research Section A*: **2020**, *957*, 163402. https://doi.org/10.1016/j.nima.2020.163402.

Instrument | Beamport

Large Scale Structures

5 Instruments

Instrument class coordinator: Tom Arnold

Small Angle Neutron Scattering (SANS)

Accessing length-scales up to μm

<u>LoKI</u>: Broad-band SANS for soft matter, materials and bio-science Lead scientists: Judith Houston (ESS) IK partners: ISIS (100%)

<u>SKADI</u>: High-resolution versatile SANS Lead scientist: Sebastian Jaksch (FZJ) IK partners: FZJ (50%), LLB (50%)

Reflectometry

Surfaces, thin films and interfaces

<u>ESTIA</u>: Small-sample reflectometer for magnetism and soft matter Lead scientist: *Open Position* (PSI/ESS) IK partners: PSI (100%)

<u>FREIA</u>: Kinetics reflectometer for liquid surfaces and soft matter Lead scientist: Tom Arnold (ESS) IK partners: ISIS (100%)

Macromolecular Crystallography

Biomolecule Crystal Structure

<u>NMX</u>: Macromolecular crystallography Lead scientist: Esko Oksanen (ESS) IK partners: Wigner/EK/BRC (38%), LLB/IBS (8%), UiBergen (19%) LoKI

SANS for Soft Matter, Materials and Bio-science

Detector tank installed Shielding walls under installation

Detector mechanics and modules awaiting delivery

Detector Tests

We collected calibration data on the LoKI rear detector panel using the full ESS software stack at ISIS. Excellent test for hot commissioning.

NeXus file displayed in scipp From the latest measurements in March 2022

LoKI Quick Facts	
Instrument Class	SANS
Moderator	Cold
Primary Flightpath	23.5 m, $L_1 = 3$, 5, 8 m
Secondary Flightpath	$L_2 = 1.5 m, 3 m, 5-10 m$
Wavelength Range	2–22 Å
Standard Mode (14 Hz)	
Bandwidth	7.5 Å $[L_2 = 10 m]$
	10 Å $[L_2 = 5 m]$
Flux at Sample at 2 MW	4×10^8 n s ⁻¹ cm ⁻² [L ₁ = 3 m]
-	$5.6 \times 10^7 \text{ n s}^{-1} \text{ cm}^{-2} [L_1 = 8 \text{ m}]$
Q-Range	0.01–2 Å ⁻¹ [L ₁ = 3 m, L ₂ = 1.5, 5 m]
	0.005–2 Å ⁻¹ [L ₁ = 8 m, L ₂ = 1.5, 10 m]
Pulse Skipping Mode (7 Hz)	
Bandwidth	15 Å $[L_2 = 10 m]$
	20 Å $[L_2 = 5 m]$
Flux at Sample at 2 MW	2×10^8 n s ⁻¹ cm ⁻² [L ₁ = 3 m]
-	$2.8 \times 10^7 \text{ n s}^{-1} \text{ cm}^{-2} \text{ [L}_1 = 8 \text{ m]}$
Q-Range	0.005–2 Å ⁻¹ [L ₁ = 3 m, L ₂ = 1.5, 5 m]
	0.002–2 Å ⁻¹ [L ₁ = 8 m, L ₂ = 1.5, 10 m]

Science and Technology Facilities Council

SKADI

СН

FORSCHUNGSZENTRUM

Small-K Advance Diffractometer – Polarised SANS for Materials Science

Solid-State	Neutron	Detector

	Quick F	acts	
Sector	East		
Beam Port	E03		
Class	Polarized	d SANS	
Moderator	Cold		
Length	58 m		
Q-Range	10 ⁻⁴ – 1 Å	å -1	
Flux at sample	7.7×10 ⁸	³ n s ⁻¹ cm ⁻²	
position			
Start of	Close to	вот	
operation			
Star	ndard Mo	ode (14 Hz)	
Wavelength Band 5 Å			
Wavelength Range		3 – 21 Å	
Momentum Reso	lution	ΔQ/Q= 2-7 %	
Pulse Skipping Mode (7 Hz)			
Wavelength Band	l	10 Å	
Wavelength Range		3–21 Å	
Momentum Resolution		ΔQ/Q = 1-7 %	

rphée \ Laboratoire Léon Brillouin

Estia

Focussing Polarised Reflectometer for Tiny Samples

FREIA

A neutron reflectometer optimised for soft matter and life sciences.

Fast-shutter project

Collaboration with Marek Jacewicz, Niklas Johansson & Tord Ekelöf (FREIA lab, Uppsala University), James Doutch (ISIS, STFC) and Tommy Nylander & Ben Humphries (Lund University)

Time at sample (us)

- used to rapidly change angles in between source pulses prototype tested with beam at
- ISIS (ZOOM)

monitor

100000

UNIVERSITET

UPPSALA

In-monolith optics delivered (SD-H & Jü lich)

ered (Airbus)

FREIA Quick Facts	
Instrument Class	Reflectometry
Moderator	Cold
Primary Flightpath	22.8 m
Secondary Flightpath	3.0 m
Polarised Incident Beam	Available as a foreseen upgrade
Sample Orientation	Horizontal
Representative Incident Beam	0.45°, 0.9°, 3.4°
Angles*	(full range 0.2 - 3.7° depending on angular resolution)
Standard Mode (14 Hz)	
Wavelength Range	2-10 Å
Flux at Sample at 2MW*	1×10^5 , 5×10^5 , 7×10^6 n s ⁻¹ cm ⁻² [high res (WFM) mode] 1×10^6 , 4×10^6 , 6×10^7 n s ⁻¹ cm ⁻² [high flux mode]
Q-Range	0–1 Å ⁻¹ (solid samples) 0.0045 –0.38 Å ⁻¹ (free liquids)
Q-resolution*	3-3.5% [high res (WFM) mode]
	5–23% (across free-liquid Q-range) [high flux mode]
Pulse Skipping Mode (7 Hz)	
Wavelength Range	2-18 Å
Flux at Sample at 2MW*	5×10 ⁵ , 2×10 ⁶ , 3×10 ⁷ n s ⁻¹ cm ⁻² [high flux mode]
Q-Range	0–1 Å ⁻¹ (solid samples) 0.002–0.38 Å ⁻¹ (free liquids)
Q-resolution	3-23% (across free-liquid Q-range) [high flux mode]

*All values guoted for the high resolution and high flux modes assume the incident angles stated, an angular resolution of 2.5% $\Delta\theta/\theta$ (this resolution could be improved for the high-resolution mode or relaxed for the high-flux mode) and a beam footprint of 8cm x 3cm .

Science and Technology Facilities Council

Macromolecular Diffractometer

NMX Quick Facts.	
NMX Quick Facts	
Instrument Class	Large-Scale Structures
Moderator	Cold
Primary Flightpath	157 m
Secondary Flightpath	0.2–1.0 m
Wavelength Range	1.8–10 Å
Bandwidth	1.74 Å
Flux at Sample at 2 MW	$1 imes 10^9$ n s $^{-1}$ cm $^{-2}$ (1.8–3.5 Å)
Wavelength Resolution $\Delta \lambda / \lambda$	2%–4% (over wavelength range)
Beam Divergence	Adjustable up to $\pm 0.2^{\circ}$
Beam Size	0.2–5 mm

- Enzyme mechanisms
- Protein-ligand interactions
- Proton transport across membranes

Imaging & Engineering

2 Instruments

Instrument class coordinator: Robin Woracek

Imaging: rapidly developing real-space technique, resolution down to few μm

<u>ODIN</u>: Multi-purpose imaging beamline Lead scientists: Aureliano Tartaglione (TUM), Manuel Morgano (ESS)

IK partners: TUM (55%), PSI (35%), ESS (10%)

Engineering: strains and structure of engineering components, in-situ materials processing

<u>BEER</u>: Engineering materials diffractometer Lead scientists: Premek Beran (ESS), Gregor Nowak (Hereon)

IK partners: NPI (50%), Hereon (50%)

Optical and Diffraction Imaging with Neutrons

	1					
		10708 	NUMBER OF STREET	j.		-
0	0		-			
	•	• •			 • • •	
	:					
	•			B-X PP		
ł	• .				1-1	BAN

ODIN Quick Facts	
Instrument Class	Imaging
Moderator	Bispectral
Primary Flightpath	50 m (to pinhole)
Secondary Flightpath	2 – 14 m (pinhole to detector)
Wavelength Range	1 – 10 Å
Field of View	20 x 20 cm ²
L/D Ratio	Tunable 300 – 10000
Incident Beam Polarisation	Optional
Polarisation Analysis	Optional
Bandwidth at 14 Hz	4.5 Å
White Beam Mode	
Flux at Sample at 2 MW	1.2 x 10 ⁹ n s ⁻¹ at 10 m, L/D = 300
Spatial Resolution	< 10 µm
TOF Mode without Pulse-S	haping
Flux at Sample at 2 MW	0 100 1 1 10 L/D 300
•	9×10^8 n s ⁻¹ at 10 m, L/D = 300
Spatial Resolution	9 x 108 n s ⁻¹ at 10 m, L/D = 300 < 10 μm
Spatial Resolution Wavelength Resolution	9 x 10 ^s n s ⁻¹ at 10 m, L/D = 300 < 10 μm Δλ/λ = 10% at λ = 2 Å
Spatial Resolution Wavelength Resolution TOF Mode width Pulse-Sha	9 x 10 ^s n s ⁻¹ at 10 m, L/D = 300 < 10 μm $\Delta \lambda / \lambda = 10\%$ at λ = 2 Å aping
Spatial Resolution Wavelength Resolution TOF Mode width Pulse-Sha Flux at Sample at 2 MW	9 x 10 ^s n s ⁻¹ at 10 m, L/D = 300 < 10 μ m $\Delta\lambda/\lambda = 10\%$ at $\lambda = 2$ Å apping 1 x 10 ^s n s ⁻¹ at 10 m, L/D = 300
Spatial Resolution Wavelength Resolution TOF Mode width Pulse-Sha Flux at Sample at 2 MW Spatial Resolution	9 x 10 ^s n s ⁻¹ at 10 m, L/D = 300 < 10 μ m $\Delta\lambda/\lambda = 10\%$ at $\lambda = 2$ Å apping 1 x 10 ^s n s ⁻¹ at 10 m, L/D = 300 < 10 μ m

Engineering & Material Science Diffraction

- * In-situ and in-operando experiments close to the real conditions
- * Fast strain scanning
- * Phase analysis of multi-phase and composite materials
- In-situ texture or grain growth evolution *
- * Long term experiments

1.99

	1.15 1.20	1.25 1.30	1.35		2500 - 2000 - 1500 - 1000 - 500	counts (red)	
1.2	1.4	1.6 d,Å	1.8	2.0	2.2		
			-	_			2.005 -

BEER Quick Facts				
Instrument Class	Engineering Diffraction			
Moderator	Bispectral			
Primary Flightpath	158 m			
Secondary Flightpath	2 m			
Wavelength Range	0.8–6Å			
Bandwidth	1.7 Å			
d-spacing Range	0.6 – 7 Å			
Pulse-Shaping Mode				
Resolution ∆d/d	0.15 – 0.6 %			
Flux at Sample at 2MW	0.18 – 1.4·10 ⁸ n s ⁻¹ cm ⁻²			
Modulation Mode				
Resolution ∆d/d	0.1 – 0.3 %			
Flux at Sample at 2MW	0.18 – 0.87·10 ⁸ n s ⁻¹ cm ⁻²			

hereon

3 Instruments

Instrument class coordinator: Werner Schweika

Powder Diffraction

Structural characterisation of materials

<u>DREAM</u>: General-purpose powder diffractometer Lead scientist: Mikhail Feygenson (ESS) IK partners: FZJ (76%), LLB (24%)

<u>HEIMDAL</u>: Thermal powder diffractometer Lead scientist: Dan Mannix (ESS) IK partners: ÅU (30%), PSI (35%), IFE (35%) Single-Crystal Diffraction

Determination of complex structures

<u>MAGiC</u>: Magnetic Coulomb liquid to a ferromagnet in Lead scientist: Xavier Fabrèges (LLB) IK partners: LLB (61%), FZJ (23%), PSI (16%)

DREAM

Diffraction Resolved by Energy and Angle Measurements

Mantle & Endcap detectors

Magnetism

superconductors multiferroics weak moments orbital ordering charge ordering

Energy Materials

Li, H -materials *in-situ* measurements multiphase small coin cells

Nanostructures

magnetic nanoparticles core-shell structures real-time synthesis

Large Unit Cells

MOFs catalysis thermoelectrics molecular sieves H2- storage

Experimental caves &

Control hutches

Moderator	Bi-spectral	
Primary	76.5 m	
Flightpath		
Secondary	1.1 m (end-cap and mantle	
Flightpath	detectors)	
	2.5 m (high-resolution and low-	
	angle detectors)	
Wavelength	0.5–4.1 Å	
Range		
Flux at sample	1.4×10 ⁷ ns ⁻¹ cm ⁻² (Δd = 3×10 ⁻⁴ Å)	
at 2MW	$1.0 \times 10^9 \text{ns}^{-1} \text{cm}^{-2} (\Delta d = 2.5 \times 10^{-2} \text{cm}^{-2})$	
	Å)	
Q-Range	0.01 – 25 Å ⁻¹	
Detector	1.82 sr first day operations	
Coverage	5.12 sr full scope	
d-spacing	Adjustable 3×10 ⁻⁴ – 2.5×10 ⁻² Å	
Resolution ∆d		

HEIMDAL

Hybrid Diffractometer: Combined Diffraction and SANS and Imaging

- Real time chemical synthesis
- Fast chemical reactions and kinetics
- 2D Rietveld Neutron Powder Diffraction
- In operando fuel cells and batteries
- Texture studies
- Magnetic Materials
- Superconductor Materials
- In situ catalysis
- Single crystal diffraction of small samples
- Nano-particles and core-shell structures

Aarhus

University (AU)

HEIMDAL Quick Facts.	
HEIMDAL Quick Facts	
Instrument Class	Diffraction
Moderator	Thermal (Bispectral and Cold ^a)
Primary Flightpath	157 m
Secondary Flightpath	Diffraction: 0.8 m
	(SANS: 10 m, Imaging: 4 m ^a)
Wavelength Range	0.5–4 Å
Bandwidth	1.7 Å
Flux at Sample at 2 MW	$10^{6} - 10^{8} - 10^{9}$ n s ⁻¹ cm ⁻²
	(High-resolution – Medium-res. – High-flux)
Q-Range	$0.5-25 \text{ \AA}^{-1}$
d-spacing Resolution ⊿d/d	Adjustable 0.04%–1%
SANS and Imaging modes ^a	
Moderator	Cold
Wavelength Range	3–20 Å
Q-Range (SANS)	10^{-3} –4 Å ⁻¹
Wavelength Resolution	1.5% at $\lambda = 4$ Å
$\Delta\lambda/\lambda$ (SANS)	0.6% at $\lambda = 11$ Å
Field of View (Imaging)	$50 \times 50 \text{ mm}^2$
Spatial Resolution (Imaging)	50 µm

Full Technical Scope

Institute for Energy

Technology (IFE)

- Bispectral Instrument
- Thermal + Cold Neutron Guides
- Optimised Diffraction & SANS
- 3D Neutron Imaging

Polarised Diffractometer for Magnetism

- Local susceptibility and spin densities;
- Exotic magnetic structure (long range, non-collinear, anisotropic Hamiltonian);
- Multifunctional materials;
- Superconductivity;
- Frustrated magnets and quantum spin liquids;
- Magnetism in thin films and at interfaces;

PEDER

INI <i>F</i>	AGIC QUICK FACTS
Instrument Class	Diffraction
Moderator	Bispectral
Primary Flightpath	159 m
Secondary Flightpath	1 m
Wavelength Range	0.6 – 6 Å
Bandwidth	1.7 Å
Flux at Sample at 2MW	8.0x10 ⁸ n/s/cm ² (0.6 – 2.3 Å) 1.5 x10 ⁹ n/s/cm ² (2.0 – 3.7 Å)
Polarised Incident Beam	Permanent
Flipping	Ratios Detector Bank
Q-Range	0.2 – 21 Å ⁻¹
Q-Resolution ∆d/d	Adjustable 1 – 12 %
Detector Coverage	60°(H) × 48°(V)
Polarizatio	n Analysis Detector Bank
Q-Range	0.2 – 6 Å ⁻¹ (2.0 – 6.0 Å)
Q-Resolution ∆d/d	Adjustable 0.2 – 4 %
Detector Coverage	120°(H) × 6°(V)

Spectroscopy

5 Instruments

Direct-Geometry Spectroscopy Coordinator: Pascale Deen

General-purpose chopper spectrometers

<u>CSPEC</u>: Cold chopper spectrometer Lead scientist: Pascale Deen (ESS) IK partners: TUM (50%), LLB (50%)

<u>T-REX</u>: Bispectral chopper spectrometer Lead scientist: Christian Franz (FZJ) IK partners: FZJ (75%), CNR (25%)

Indirect-Geometry Spectroscopy Coordinator: Pascale Deen

Crystal-analyser instruments

<u>BIFROST</u>: Single-crystal spectroscopy Lead scientist: Rasmus Toft-Petersen (DTU) IK partners: DK (24%), PSI (28%), LLB (21%), IFE (24%), Wigner (3%)

<u>VESPA</u>: Vibrational spectroscopy Lead scientist: Daniele Colognesi (CNR) IK partners: CNR (75%), ISIS (25%)

<u>MIRACLES</u>: Backscattering spectroscopy Lead scientist: Felix Villacorta (ESS-Bilbao) IK partners: ESS-Bilbao, KU

Spectroscopy Kinematic Range

Q (Å-1)

CSPEC Cold Chopper Spectrometer

- Collective and quasiparticle excitations in frustrated compounds.
- Low lying excitations of quasiparticles in quantum materials.
- Magnon -phonon hybrid excitations in multiferroic materials.
- Time dependence of the rotational and translational diffusive processes in enzyme catalysis.
- Dynamics of hydration processes and the structural relaxation of the glassy water.
- Time dependent phenomena of hydrogen storage in clathrates.
- Proton diffusion in metal organic frameworks.
- Operando studies of proteins such as those involved in photosynthesis.

	10-1		56 Hz ↓	1.72 Å
$\Delta E/E_{\rm i}$	10 ⁻²	1.72 A		
	0	⁵ w	10 avelength [Å]	15

CSPEC quick facts	
Primary flight path	160 m
Secondary flight path	3.5 m
Moderator	Cold
Wavelength range	2-20 Å
Bandwidth	1.72 Å
Flux at sample (2 MW,	9 10 ⁵ n s ⁻¹ cm ⁻²
λ = 5 Å, Δ E/E _i = 3%,	(4 x 2 cm ² standard beam)
no RRM, with RRM \sim x6)	4 10 ⁶ n s ⁻¹ cm ⁻²
	(1 x 1 cm ² focussed beam)
Full detector coverage	5 ^o – 140 ^o [H] ± 26 ^o [V]
Energy resolution	1% - 5% E _i
Polarisation analysis	Foreseen upgrade

T-REX

Polarised Bispectral Chopper Spectrometer

- Understanding the effect of spin–orbit coupling in the classification of quantum spin liquids
- Magnetic excitations of emergent phenomena in magnetically frustrated materials
- Time dependence of the rotational or translational diffusive processes in enzyme catalysis.
- Time dependent phenomena of hydrogen storage in clathrates.
- Proton diffusion in metal organic frameworks.
- Diffusion dynamics and the relation to the ordering mechanism of solidification.
- Understanding light induced dynamics of antenna pigment/protein complexes.

BIFROST

Multiplexing Indirect Spectrometer for Extreme Environments

- Low-D magnets
- High-Tc superconductivity
- Functional magnetic materials
- Geoscience
- Parametric studies
- Weak signals & small samples

	A 1	BIFROST Quick Facts.							
	Analysers	BIFROST Quick Facts							
		Instrument Class Moderator Primary Flightpath Sample-Analyser Flightpath Wavelength Range Bandwidth 2θ Range 2θ Coverage 2θ Resolution Analyser Energies	Spectroscopy Cold 162 m 1.1–1.7 m 1.5–6 Å 1.7 Å 7°–135° 90° in 2 settings 0.7°–1.2° 2.7 3.2 3.8 4.4 5.0 meV						
		Energy Transfer Range	-3 to +55 meV						
tubes	E E 2 3	Flux at Sample at 2 MW Resolution ($E_f = 5 \text{ meV}, \hbar\omega = 0$) Resolution ($E_f = 5 \text{ meV}, \hbar\omega = 5 \text{ meV}$)	$6 \times 10^9 \text{ n s}^{-1} \text{ cm}^{-2}$ 190 μeV 450 μeV						
		High Resolution Mode [2.3–4.0 Å]							
		Flux at Sample at 2 MW Resolution ($E_f = 5 \text{ meV}$, $\hbar\omega = 0$) Resolution ($E_f = 5 \text{ meV}$, $\hbar\omega = 5 \text{ meV}$)	9×10^8 n s ⁻¹ cm ⁻² 50 µeV (prismatic) 50 µeV (prismatic)						

VESPA

Vibrational Excitation Spectrometer with Pyrolytic graphite Analysers

- NVS is used to investigate solids and liquids, soft matter, complex fluids, and bio-materials, permitting the identification of bonds and functional groups.
- NVS exploits the large incoherent scattering cross section of the hydrogen nucleus. Proton dynamics or vibrations connected to the movement of H atoms can be easily detected spectroscopically, even if hydrogen is dissolved at very low concentrations in materials composed mostly of heavier atoms.

· t							
Instrument Class	Spectroscopy						
Moderator	Thermal						
Primary Flightpath	59 m						
Sample-Analyser Flightpath	0.61–0.69 m						
Wavelength Range	0.4–4.7 Å						
Bandwidth	4.3 Å						
Analyser Coverage	0.75 (5.25 ^a) sr						
Analyser Energies	3.7–4.8 meV						
Energy Transfer Range	-1 to +500 meV						
High Flux Mode							
Flux at Sample at 2 MW	$2.3 \times 10^8 \text{ n s}^{-1} \text{ cm}^{-2}$						
Energy Resolution	$\Delta E/\hbar\omega \approx 2.6\%$						
High Resolution Mode							
Flux at Sample at 2 MW	$6.5 \times 10^7 \text{ n s}^{-1} \text{ cm}^{-2}$						
Energy Resolution	$\Delta E/\hbar\omega \approx 1.0\%$						

^aAvailable as a foreseen upgrade.

VESPA Ouick Facts

MIRACLES

ESS MIRACLES

Monolith Bunker

Backscattering Spectrometer

E02

- Pharmaceutical studies, drug delivery.
- Energy sciences: catalysis, fuel cells and H2 storage, CO2 capture, proton diffusion.
- Polymer sciences: organic electronic devices, viscoelasticity.
- Climate change: waste containment, ice formation, Portland-alternative cements.
- Next-generation magnetic materials: molecular nanomagnets.

MIRACLES Quick	Facts	
----------------	-------	--

	Instrument Class	Spectroscopy
	Moderator	Cold
	Primary Flightpath	162.5 m
	Sample-Analyser Flightpath	2.5 m
	Wavelength Range	2–20 Å
	Bandwidth	1.5 Å, <u>+</u> 0.5 meV ^a
	Energy Transfer Range	-2 to $+20$ meV
	Q Range	0.2–2 Å ^{–1a}
-	High Flux Mode	
	Flux at Sample at 2 MW	1.5×10^9 n s ⁻¹ cm ^{-2a}
	Elastic Energy Resolution	45 µeV
-	High Resolution Mode	
	Flux at Sample at 2 MW	$4 \times 10^7 \text{ n s}^{-1} \text{ cm}^{-2a}$
	Elastic Energy Resolution	2 μeV

^aWhen centred on $\lambda = 6.27$ Å.

Instrument Project Lifecycle

Overall Instrument Timeline

Estimates as of August 2022 – with BOT in Q2 2025

															· · · · · · · · · · · · · · · · · · ·											
		2022	2			2023	3			2024				2025				2026				2027				
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
LoK							TG5																			
SKA	DI															TG5										
Esti	а										TG5															
FRE	IA																TG5									
NM	Х										TG5															
DR	AM								TG5																	
MA	GiC													TG5												
HEI	MDAL																	TG5								
CSP	PEC														TG5											
T-R	EX																		TG5							
BIF	ROST								TG5																	
MIF	RACLES																TG5									
VES	PA																		TG5							
OD	IN						TG5																			
BEE	R									TG5																
TBL																										
The	he timeline shows :						BC	DT					SO	UP												
Design, construction, and cold commissioning																										
	Safety	readi	ness	chec	ks an	d app	provals	;																		
	Hot commissioning (testing and validation with neutrons) and Early Science																									

User programme

Staff in Hot Commissioning

Science + NSS

- 3 scientists/scientific associates for each instrument in hot commissioning mixture depending on need, working across instruments.
- Core team of technicians
- 1 data scientist for each instrument in hot commissioning
- Support from relevant parts of ESS for:
 - Sample environment
 - Detectors
 - Choppers
 - Motion Control and Automation
 - Instrument Controls
 - Data Management and Software
 - Polarisation
 - Laboratories and sample handling
- Total effort per instrument 5-8 FTE during Hot Commissioning similar to our operations staffing level.
 - SNS experience was 12 FTE per instrument
- Number of instruments that can be commissioned simultaneously will depend on overall staff profile
- Includes in-kind staff from instrument partner institutes

Comparison with Other Facilities

Operations Staffing SOUP => 2MW steady state

	ESS ^a	ILL ^b	ESRF ^c	ISISd	SNS ^e
Instruments (incl. CRGs/3)	15	31	35.6	30	18.3
Beam days for user programme	2400	3899	4404	2678	2525
per instrument	160	126	124	89	138
Number of operational days	200	158	225	130	184
Number of experiments	600	785	1358	766	681
Average Experiment Length [days]	4.0	5.0	3.2	3.5	3.7
Local Contacts / Instrument	2.5	2.2	3.4	2.2	2.6
Instrument Support Staff / Instr.	1.0	1.0	1.6		0.9
Sample Environment Staff / Instr.	0.5	0.5		0.6	0.9
Other Tech. Support / Instrument	4.0	3.6	4.1	3.0	6.5
Total Staff / Instrument	8	7.2	9.0	5.9	10.8
Total Staff / Experiment	0.2	0.28	0.24	0.23	0.29

Table shows **FTE** working **directly** on experiment operations. The **total staff headcount** is required to be higher to provide 24/7 support, and a core staff is needed for maintenance, installation, development, calibration and testing, and management.

Instrument Scientists Group

Introducing the Team

