

J-PARC-ESS Workshop 2022/10/10-11@Lund, Sweden & Zoom

The neutron source characterization at BL10, NOBORU

Masahide Harada Kenichi Oikawa, Tetsuya Kai, Motoki Ohi Yusuke Tuchikawa, Makoto Teshigawara, Fujio Maekawa, Shinichiro Meigo J-PARC center, JAEA

Contents

- Introduction
 - Explanation of the spallation neutron source and BLI0 (NOBORU)
- Calculations
 - Code system for neutronic design of JSNS
 - Calculation model and parameter
 - Calculation results
- Measurements and validations at BLI0
 - First neutron measurement
 - Neutron intensity
 - Pulse shape
 - Spatial distribution
- Other measurements
 - Additional measurements
 - Measurements in other BLs

Summary

Introduction

Introduction

- The spallation neutron source at MLF in J-PARC has been designed by particle transport codes (NMTC/JAM, PHITS, MCNP and MCNPX) on viewpoint of neutronics.
- The validation is one of the most important works to check reliability of the calculations.
- The purpose of this study is the validation of neutronics calculation at MLF spallation neutron source in J-PARC.

Spallation Neutron Source at MLF in J-PARC

•3GeV proton beam
•Mercury Target
•Supercritical hydrogen moderator

Liquid moderators

Beam line arrangement and BL10

BL10, NOBORU

NeutrOn Beam-line for Observation and Research Use (NOBORU) The aims of BL10 are to confirm the neutron characteristics and to do various test. The largest sample (Fe in $10 \times 10 \times 10$ cm3) can be used. Sample position is 14m in distance from moderator. Neutron beam line size is 10×10 cm² and the largest among the neutron beam ports. Several components are installed.

Target & Moderator

Calculations

Code System

For the spallation neutron

Calculation model and calculation parameter

3 D view of JSNS design

Item	Calculation condition
Proton Beam	
Power	1MW at the proton beam window
Operation time	5000 hours / year
	Emittance : 81 π mm mrad
Profile	Gaussian + Uniform
	Footprint : $180 \times 70 \text{ mm}^2$
Repetation rate	25Hz
Proton Beam window	
Material & thickness	Al-alloy (A5083), 2.5mm ^t x 2 plates
Coolant	H ₂ O
Target	2
Material, density	Mercury, 13.6 g/cm ³
Vessel material	316L stainless steel
Coolant	D ₂ O
Moderator	2
Type & number	Coupled (CM) 1
	Decoupled (DM) 1
	Decoupled Poisoned (PM) 1
Material property	Super-critical hydrogen, 20K,
	1.5MPa,0.07g/cm ³
Vessel material	Al-alloy (A6061, A5083)
Coolant	H ₂ O
Reflector	
Material & size (Inner)	Beryllium, 50 cm (Dia.) x 100 cm (Hei.)
Material & size (Outer)	Iron, 100 cm (Dia.) x 100 cm (Hei.)
Coolant material., fraction	D_2O , about 10% (channel width: 5mm)
Vessel material	Al-alloy (A5083)
Water-cooled shield	
Material	304 stainless steel
Coolant material, fraction	$^{11}H_{2}O$, about 10%
Air-cooled shield	a. 1
Material	Steel
Coolant material	Air
Neutron beam line	22
Number	23

Calculation results

Measurements and validations

Measurement list

- First neutron measurement
- Neutron intensity
 - Thermal-cold neutrons
 - High energy
- Pulse shape
 - Thermal-cold neutrons
 - High energy
- Spatial distribution on moderator surface
 - Thermal-cold neutrons
 - High energy

Pictures of neutron measurement at BL10

Counting detectors 1/2 inch He-3 detector (Eff~1) He-3 monitor (Eff:10⁻¹,10⁻²,10⁻³,10⁻⁴,10⁻⁵)

Beam stop

Neutron beam entrance

First Neutron Measurement

First direct beam was measured by CTOF method at the sample position at BLI0.

CTOF: Current Time of Flight

The first neutron beam

Only 1 shot !

Measurement of neutron spectral intensity

Time of flight

•Measuring time 6 minutes CTOF 1 hour 1/2" He-3 at 20 kW

•Exp(CTOF)-Exp(He-3): Good agreement

•Exp(CTOF)-Cal : Good agreement

•Experimental error : within 30 % :CTOF within 10 % :He3 detector

Ultra-cold neutrons

- Neutron measurement in IHz operation was performed.
- Lower neutrons around 20 µeV could be measured.

High energy neutrons (1)

Figure 11: Neutron energy dependence of each reaction rate.

Pulse shape measurement

- Sample: mica and diamond
- The detector was located at 170°

Fig. 3. Pulse width at half and 1 % maximum of observed mes of DM of JSNS.

Good agreement

Fig. 1. Example of pulse shapes of the cold neutrons. Bragg peaks of (004) and (008) of mica are represented.

Fig. 2. Example of pulse shapes of the thermal and epithermal neutrons. Bragg peaks of (440) and (10 10 0) of diamond are extracted.

Spatial distribution

L2

We could observe the spatial distribution.

Spatial distribution of high energy neutrons

The ${}^{27}AI(n,\alpha){}^{24}Na$ reaction was used.

Spatial distribution on moderator surface and neutrons reflection at ducts

Other measurements

Proton beam position dependence on neutron intensity

Liquid hydrogen temperature dependence on neutron spectral intensity

Bubbling effect on neutron intensity

- Neutron intensity decreases or doesn't by the bubbling in the target system?
- Neutron intensity were measured at BLI0 with the He-3 monitor (Eff:10⁻⁵)
- Neutron intensity integrated in the energy region from 1 meV to 100 meV with the bubbling decreases 0.55% compared with that without the bubbling.

-> Negligible difference

Comparison of 0.5MW and 1MW operation Neutron absolute intensity and spectral intensity (Preliminary)

BLI0 noboru

2cases operation

- •0.5MW(506kW) operation
- I.0MW(879kW) operation

Absolute value by Gold foil activation method

Below Cd cut-off energy 2.1×10^{-16} reaction/atom/s@506kW $\rightarrow 2.0 \times 10^{-31}$ reaction/atom/p 3.6×10^{-16} reaction/atom/s@879kW $\rightarrow 2.0 \times 10^{-31}$ reaction/atom/p

Linearity is good.

Absolute value of neutron intensity with gold foil activation method

- IMW operation for 10 hours on July 3 was successful.
- A July 2500kW operation is 2• At sample position (13.4m) RI_10 (Noboru) with $2.5 \ 10^6$ 2 1

 - Good agreement
 - At IMW operation with no collimator, 4.7×10^7 n/cm²/s will be archived.

Fixed measurement (Gold foils)

We continue to measure neutron intensity with the gold foil and He-3 monitor

Reaction rate vs. Proton beam power

Neutron observation after the operation stop

There events were confirmed as neutron detections from the pulse height data

These events ?
1, Delayed neutrons
2,The (γ,n) rection ex. ⁹Be+γ→⁸Be+n-1.666MeV

> $f0(t)=95.749*(1/2)^{(t/6.5381)}$ $f1(t)=172.06*(1/2)^{(t/134.41)}$ $f2(t)=28.811*(1/2)^{(t/4217.2)}$

Measurements in other BLs

Neutron spectral intensity in other beam lines

Good agreement within 20%

Pulse Shape Measured & Calculated

BL01 4Season (CM)

Summary

- The neutronics calculation at MLF spallation neutron source in J-PARC was validated and the good agreement was confirmed.
- Several measurement remained will be done.

References

Main contents

- M. Harada, et al., Experimental validation of the brightness distribution on the surfaces of coupled and decoupled moderators composed of 99.8% parahydrogen at the J-PARC pulsed spallation neutron source, Nucl. Instrum. Meth. A Vol. 903, 38-45, (2018).
- K. Oikawa, et al., Study on the pulse shape of thermal and cold neutrons provided by the decoupled moderator of JSNS, JPS Conf. Proc. (Internet), 1, p.014012_1 014012_4 (2014)
- M.Harada, et al, Application and validation of particle transport code PHITS in design of J-PARC I MW spallation neutron source, Prog. Nucl. Sci. Technol. (Internet), Vol.2, 872-878, (2011).
- M. Harada, et al., Shielding Design of a Neutron Beam Line "NOBORU" at JSNS/J-PARC, Prog. Nucl. Sci. Technol. (Internet), Vol. I, 94-97, (2011).
- M. Harada, et al., Measurement of neutronic characteristics of JSNS, Proc. ICANS-19 (CD-ROM), 1-8, (2010).
- Spatial distribution at high energy region
 - M. Harad, a et al., to be prepared to submit to Nucl. Instrum. Meth.A
- Proton beam power dependence
 - M. Harad,a et al., to be presented in JSNS 2022 Autum

Thank you for your attention.