

### **LoKI Hot Commissioning**

Commissioning Workshop ESS-JPARC: Instrument Session

JUDITH HOUSTON 2022-10-10





2

### Neutron reflectometers

# FREIA Horizontal Reflectometer

Driven Releas

T. Arnold (ESS), J. Nightingale (ISIS), J. Elmer (ISIS)

FREIA is a flexible instrument optimised for time**resolved** and high throughput studies:

- Wide vertical divergence; **extended simultaneous Q range** & avoids slow sample movements
- Downward orientation for **liquid interfaces**
- Flexible Collimation options
- High flux ( $d\lambda/\lambda = 3-20$  %) or high res. ( $d\lambda/\lambda < 3$ %) modes

#### Wide ranging science case in **soft matter &** biosciences

Kinetics



Q (1)



# ESTIA Small Sample Polarised Reflectometer

- The investigation of the **chemical and magnetic** depth-profile near surfaces and of **lateral correlations and structures**
- Selene neutron guide projects tiny beam from Virtual Source
- Small samples:
  - Large divergence (1.5°x1.5°)
  - Samples down to 1x1 mm<sup>2</sup>
- Polarization >99% for curved transmission polarizer and analyser
- Simultaneous measurement of two polarization states

ESTIA is optimised for small samples and polarisation analysis:





Selene Neutron Guide

| Quick Facts             |                                      |  |  |  |  |  |
|-------------------------|--------------------------------------|--|--|--|--|--|
| Moderator               | Cold                                 |  |  |  |  |  |
| Length                  | 35 m                                 |  |  |  |  |  |
| Q-Range (solid samples) | 10 <sup>-3</sup> – 3 Å <sup>-1</sup> |  |  |  |  |  |
| Sample orientation      | Vertical                             |  |  |  |  |  |
| Standard Mode (14 Hz)   |                                      |  |  |  |  |  |
| Min. Wavelength Band    | 7 Å                                  |  |  |  |  |  |
| Min. Wavelength Range   | 3.5 – 28 Å                           |  |  |  |  |  |
| Min Q Resolution        | ΔQ/Q < 2-7 %                         |  |  |  |  |  |

3

# Small-angle neutron scattering

## SKADI High Resolution SANS



- S. Jaksch, H. Frielinghaus (JCNS), J. Jestin (LLB), R. Hanslik (FJZ), S. Desért (LLB)
- High-flux neutron extraction by optimized deflector
- Separate long/short wavelength polarization with supermirrors
- 4, 8, 14 and 20 m collimation settings
- VSANS: Down to  $\sim 10^{-5}$ Å<sup>-1</sup>
- SoNDe : Dedicated detector development for best use of high-flux and single shot measurements, achieving large Q-coverage.

| Quick Facts             |                                              |  |  |  |  |  |
|-------------------------|----------------------------------------------|--|--|--|--|--|
| Moderator               | Cold (max @ ~3 Å)                            |  |  |  |  |  |
| Length                  | 58 m                                         |  |  |  |  |  |
| Q-Range                 | 10 <sup>-4</sup> – 1 Å <sup>-1</sup>         |  |  |  |  |  |
| Flux at sample position | $7.7 	imes 10^8 \ { m n \ s^{-1} \ cm^{-2}}$ |  |  |  |  |  |
|                         |                                              |  |  |  |  |  |
| Standard Mode (14       | Hz)                                          |  |  |  |  |  |
| Wavelength Band         | 5 Å                                          |  |  |  |  |  |
| Wavelength Range        | 3 – 21 Å                                     |  |  |  |  |  |
| Momentum Resolution     | ΔQ/Q= 2-7 %                                  |  |  |  |  |  |



### LOKI Broad Band SANS



→ high flux, wide simultaneous size range, and a flexible sample area.

ABILITIES:

- Investigate multiple length scale systems (simultaneously 0.5-300 nm)
- Perform "single-shot" kinetic measurements on sub-second timescales.
- Perform experiments that use flow e.g. rheology & microfluidics with small beam sizes
- High throughput of regular SANS measurements



Lab Chip, 2017, **17**, 1559

#### **Rheo-SANS:**



Soft Matter, 2011, **7**, 9992









Colloid Polym Sci, 2010, 288, 827

### 4

# LoKI: SANS for Soft Matter, Materials & Bioscience













# Defining our beam : neutron guide



#### Requirement:

- **Transport neutrons** from the moderator to the sample with 100% brilliance transfer within the selected wavelength and divergence range
- **Prevent the transport** of high energy neutrons
- Minimise **signal-to-noise**

#### What we have:

- Use straight highly reflective guide (m=2) under vacuum
- Two multichannel benders (m=3) = twice out of line-ofsight
- Smaller beam size (25 mm × 30 mm (V × H)) to minimise transport of background





# Defining our beam : Collimation

#### Requirements

• Control the **size** and **divergence** of the beam

#### What we have:

- 4-jaw slit sets at 8, 5 & 3 m before the sample position
- Variable-sized apertures at the sample position
- Platform to switch between evacuated boron-lined tubes (collimation) or sections of m=2 guide



Collimation vacuum





### Defining our bear

Requirements

• Control the size and divergence of

#### What we have:

• 4-jaw slit sets at 8, 5 & 3 m before t

imple position Jated boron-lined m=2 guide

Po stri







16

## Shielding

### Crucial for personal protection as well as background reduction

#### Requirements

- Fulfill radiation requirements
- Improve background: Best signal-to-noise possible

### To do this, we:

- Steel and concrete caves around the entire instrument
- Heavy shutter to allow access to the sample area to change samples







### Shielding

### Crucial for personal protection as well as background reduction

Requirements

- Fulfill radiation requirements
- Improve background: Best signal-to-no

To do this, we:

- Steel and concrete caves around the entir instrument
- Heavy shutter to allow access to the samp area to change samples









## Detector System

### Novel <sup>10</sup>B-based straw tubes design typically used in security

**Efficiency**: ~50%-60% at LoKI wavelength **Position resolution**: FWHM is ~6 mm up to 350 kHz **Rate capability**: 15% rate lost at 2.3 MHz

4 layers of Al tubes, each containing 7 boron-coated straws

880 tubes x 7 straws x 256 pixels = **1,576,960 pixels** 











Detector vessel installed at ESS



### Detector mechanics prebuild at ISIS



5

# Hot commissioning Day 1

### LoKI Hot Commissioning Plan

| EUROPEAN<br>SPALLATION<br>SOURCE | Document Type<br>Document Number<br>Date           | Document Templat<br>ESS-1108651<br>Jul 18, 2016 |  |  |
|----------------------------------|----------------------------------------------------|-------------------------------------------------|--|--|
|                                  | Revision<br>State<br>Confidentiality Level<br>Page | 0.3<br>Draft<br>Internal<br>1 (13)              |  |  |

#### LoKI System Validation Plan IT

|          | Name                  | Role/Title                                 |  |  |  |  |
|----------|-----------------------|--------------------------------------------|--|--|--|--|
| Owner    | Judith Houston        | LoKI Lead Scientist (ESS)                  |  |  |  |  |
| Author   | Richard Heenan        | LoKI Instrument Scientist (STFC)           |  |  |  |  |
|          | Jim Nightingale       | UK-ESS Instruments Project Manager (STFC)  |  |  |  |  |
|          | William Halcrow       | LoKI Lead Engineer (STFC)                  |  |  |  |  |
|          | Clara Lopéz           | Instrument Integration Engineer (ESS)      |  |  |  |  |
|          | Wojciech Potrzebowski | SANS data scientist (ESS)                  |  |  |  |  |
| Reviewer | Andrew Jackson        | Head of Neutron Instruments Division (ESS) |  |  |  |  |
|          | Peter Sångberg        | Systems Engineer (ESS)                     |  |  |  |  |
| Approver | Gabor Laszlo          | NSS Lead Instrument Engineer (ESS)         |  |  |  |  |

Activities for a successful hot commissioning:

- 1. Fulfil radiation protection requirements
- 2. Hot Commissioning of beam monitors
- 3. Gold foil measurement
- 4. Choppers phases verification
- 5. Characterize beam profile
- 6. Flight path calibration
- 7. Characterization of position and tilt of detectors
- 8. Calibration of detector efficiency and resolution
- 9. Commissioning of sample environment

Many of these steps will be continuously repeated during the ramp-up of the proton beam.

4



### Commissioning linked to source ramp-up



### LoKI Hot Commissioning Plan



|    | A              | В                    | С                                                                                                                  | D                                                                                                                  | E                                                                                                                  | F                                                                                                                  | G                                                     | Н                                                     | I                                                       |                                                       | J K                                                   | L                                                                         |                                                       |                         |                                        |                         |                         |                         |         |                                    |          |                                              |    |   |    |          |    |           |  |
|----|----------------|----------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------|-------------------------|----------------------------------------|-------------------------|-------------------------|-------------------------|---------|------------------------------------|----------|----------------------------------------------|----|---|----|----------|----|-----------|--|
| 1  |                | Accelerator<br>power | projected<br>beam days                                                                                             | #                                                                                                                  | Activity                                                                                                           | required<br>continuous<br>beam days                                                                                | data<br>analysis<br>days                              | No. of<br>people<br>required<br>during<br>beamtime    | No. of<br>people<br>required<br>during data<br>analysis | G<br>pot<br>red                                       | roups<br>entially<br>quired                           | i<br>NOTES                                                                |                                                       |                         |                                        |                         |                         |                         |         |                                    |          |                                              |    |   |    |          |    |           |  |
| 2  | BOT -> BOT+3   | <100 kW              | ~13                                                                                                                | 1                                                                                                                  | Fulfil radiation protection<br>requirements HOLD POINT                                                             | 2                                                                                                                  | 0                                                     | 2                                                     | 0                                                       |                                                       | RP 4                                                  | beam days= days with stable beam at<br>the defined power for >8h at 14 Hz |                                                       |                         |                                        |                         |                         |                         |         |                                    |          |                                              |    |   |    |          |    |           |  |
| 3  |                |                      |                                                                                                                    | 1                                                                                                                  | Fulfil radiation protection requirements HOLD POINT                                                                | 2                                                                                                                  | 0                                                     | 2                                                     | 0                                                       |                                                       | RP 4                                                  | assume PSS is coommissed before HC<br>starts                              |                                                       |                         |                                        |                         |                         |                         |         |                                    |          |                                              |    |   |    |          |    |           |  |
| 4  |                |                      |                                                                                                                    | 2                                                                                                                  | Gold foil measurement                                                                                              | 1                                                                                                                  | 0                                                     | 2                                                     | 0                                                       |                                                       | RP? 2                                                 |                                                                           |                                                       |                         |                                        |                         |                         |                         |         |                                    |          |                                              |    |   |    |          |    |           |  |
| 5  |                |                      | ~70 (the plan is                                                                                                   | 3                                                                                                                  | HC of beam monitors (0-4)                                                                                          | 3                                                                                                                  | 2                                                     | 2                                                     | 2                                                       | DG                                                    | i,ECDC 6                                              |                                                                           |                                                       |                         |                                        |                         |                         |                         |         |                                    |          |                                              |    |   |    |          |    |           |  |
| 6  |                |                      | 48h continuous                                                                                                     | 4                                                                                                                  | Choppers phases verification                                                                                       | 5                                                                                                                  | 5                                                     | 2                                                     | 2                                                       |                                                       | CG 10                                                 |                                                                           |                                                       |                         |                                        |                         |                         |                         |         |                                    |          |                                              |    |   |    |          |    |           |  |
| 7  |                |                      | neutron<br>production a<br>week for the<br>first 3 months<br>and then 3-4<br>days of<br>continuous<br>beam a week) | neutron<br>production a<br>week for the<br>first 3 months<br>and then 3-4<br>days of<br>continuous<br>beam a week) | neutron<br>production a<br>week for the<br>first 3 months<br>and then 3-4<br>days of<br>continuous<br>beam a week) | neutron<br>production a<br>week for the<br>first 3 months<br>and then 3-4<br>days of<br>continuous<br>beam a week) | neutron<br>production a                               | neutron<br>production a                               | neutron<br>production a                                 | neutron<br>production a                               | neutron<br>production a                               | neutron<br>production a                                                   | neutron<br>production a                               | neutron<br>production a | neutron<br>production a                | neutron<br>production a | neutron<br>production a | neutron<br>production a | 5       | Beam profile with imaging detector | 3        | 2                                            | 2  | 2 | DG | , ECDC 6 |    |           |  |
| 8  | BOT+3 -> BOT+9 | 100 kW               |                                                                                                                    |                                                                                                                    |                                                                                                                    |                                                                                                                    | 6                                                     | Flight path calbration                                | 10                                                      | 2                                                     | 2                                                     | 1                                                                         | MCA                                                   | AG, ECDC 20             |                                        |                         |                         |                         |         |                                    |          |                                              |    |   |    |          |    |           |  |
| 9  |                | 100 80               |                                                                                                                    |                                                                                                                    |                                                                                                                    |                                                                                                                    | 7                                                     | Characterization of background                        | 4                                                       | 2                                                     | 2                                                     | 1                                                                         |                                                       | 8                       |                                        |                         |                         |                         |         |                                    |          |                                              |    |   |    |          |    |           |  |
| 10 |                |                      |                                                                                                                    |                                                                                                                    |                                                                                                                    |                                                                                                                    | and then 3-4<br>days of<br>continuous<br>beam a week) | and then 3-4<br>days of<br>continuous<br>beam a week) | and then 3-4<br>days of<br>continuous<br>beam a week)   | and then 3-4<br>days of<br>continuous<br>beam a week) | and then 3-4<br>days of<br>continuous<br>beam a week) | and then 3-4<br>days of<br>continuous<br>beam a week)                     | and then 3-4<br>days of<br>continuous<br>beam a week) | and then 3-4<br>days of | and then 3-4<br>days of                | and then 3-4<br>days of | and then 3-4<br>days of | days of                 | days of | days of                            | 8        | Collection of detector calibration mask data | 15 | 5 | 2  | 2        | DG | , ECDC 30 |  |
| 11 |                |                      |                                                                                                                    |                                                                                                                    |                                                                                                                    |                                                                                                                    |                                                       |                                                       |                                                         |                                                       |                                                       |                                                                           |                                                       | 9                       | Commissioning of sample<br>environment | 2                       | 0                       | 2                       | 0       | ECD                                | For each | of these activities we                       |    |   |    |          |    |           |  |
| 12 |                |                      |                                                                                                                    | 10                                                                                                                 | Standard samples for detector efficiency iterations.                                                               | 15                                                                                                                 | 5                                                     | 2                                                     | 2                                                       | D                                                     | have pul                                              | l out the following:                                                      |                                                       |                         |                                        |                         |                         |                         |         |                                    |          |                                              |    |   |    |          |    |           |  |
| 13 |                |                      |                                                                                                                    |                                                                                                                    |                                                                                                                    |                                                                                                                    |                                                       |                                                       |                                                         |                                                       | <ul> <li>Kov no</li> </ul>                            | ersonnel                                                                  |                                                       |                         |                                        |                         |                         |                         |         |                                    |          |                                              |    |   |    |          |    |           |  |
| 14 |                |                      |                                                                                                                    |                                                                                                                    | Total beam days required in phase: :                                                                               | <sup>-</sup> 60                                                                                                    |                                                       |                                                       |                                                         |                                                       | rey p                                                 |                                                                           |                                                       |                         |                                        |                         |                         |                         |         |                                    |          |                                              |    |   |    |          |    |           |  |
| 15 |                |                      |                                                                                                                    | ┣─                                                                                                                 | lotal data analysis days:                                                                                          |                                                                                                                    | 23                                                    |                                                       |                                                         |                                                       | <ul> <li>Requi</li> </ul>                             | rements & Assumptions                                                     |                                                       |                         |                                        |                         |                         |                         |         |                                    |          |                                              |    |   |    |          |    |           |  |
| 16 |                |                      |                                                                                                                    | 1                                                                                                                  | requirements HOLD POINT                                                                                            | 2                                                                                                                  | 0                                                     | 2                                                     | 0                                                       |                                                       | • Equip                                               | ment                                                                      |                                                       |                         |                                        |                         |                         |                         |         |                                    |          |                                              |    |   |    |          |    |           |  |
| 17 |                |                      |                                                                                                                    | 2                                                                                                                  | Gold foil measurement                                                                                              | 1                                                                                                                  | 0                                                     | 2                                                     | 0                                                       |                                                       |                                                       | int of boomdovic required                                                 |                                                       |                         |                                        |                         |                         |                         |         |                                    |          |                                              |    |   |    |          |    |           |  |
| 18 |                |                      |                                                                                                                    | 3                                                                                                                  | HC of beam monitors (0-4)                                                                                          | 1                                                                                                                  | 1                                                     | 4                                                     | 3                                                       | DC                                                    | <ul> <li>AIIIOU</li> </ul>                            | incorpeandays required                                                    |                                                       |                         |                                        |                         |                         |                         |         |                                    |          |                                              |    |   |    |          |    |           |  |
| 10 |                | I                    | I                                                                                                                  |                                                                                                                    | Ch                                                                                                                 | <b>`</b>                                                                                                           | 2                                                     | 2                                                     | <u>^</u>                                                | ·                                                     | Breif c                                               | outline of tasks                                                          |                                                       |                         |                                        |                         |                         |                         |         |                                    |          |                                              |    |   |    |          |    |           |  |

### e.g. Flux and Beam Profiles

**Key personnel**: instrument team, detector group, DMSC, and RP for the Au-foil measurements

### 6

# Challenge with detectors

### Detector System

### Novel <sup>10</sup>B-based straw tubes design typically used in security

**Efficiency**: ~50%-60% at LoKI wavelength **Position resolution**: FWHM is ~6 mm up to 350 kHz **Rate capability**: 15% rate lost at 2.3 MHz

4 layers of Al tubes, each containing 7 boron-coated straws



880 tubes x 7 straws x 256 pixels = **1,576,960 pixels** 





### Detector System

# ess

### Novel <sup>10</sup>B-based straw tubes design typically used in security

### Challenges:

- ~1.6 million pixels
- Detector multiplexing corrections
- Parallax effects through the depth of the detector
- High angle banks (up to 45°)
- Self-screening through the detector panel





|  |  |  |  | F | RONT |
|--|--|--|--|---|------|
|  |  |  |  |   |      |
|  |  |  |  |   |      |
|  |  |  |  |   |      |
|  |  |  |  |   |      |
|  |  |  |  |   | BACK |

### Detector Verification Stages



**Key personnel**: instrument scientist and data scientist, DMSC\*, detector group\*

### Detector Tests on Larmor (ISIS, UK)

Collected calibration data on the LoKI rear detector using the **full ESS software stack:** Excellent test for Hot Commissioning







NeXus file displayed in scipp

Sample measured:

- 1. Cd stripped mask
- 2. Silver behenate
- 3. SDS powder
- 4. empty beam
- 5. blocked beam
- 6. ISIS standard polymer
- 7. Silica particles
- 8. Vanadium

#### 2022-10-10 LOKI HOT COMMISSIONING

### Geant4 Simulations

Support the development of calibration and data reduction routines:

- Replicate measured data on other beamlines with simulation, and generate realistic data (for LoKI) for processing in Mantid/Scipp, to test calibration procedures and data reduction routines
- Provide data to generate calibration files to be used at the beginning of the LoKI hot commissioning phase

### Using multiple simulation/software tools:

- Using a chain of Monte Carlo simulations to carry out the full simulation of a neutron scattering instrument using the adequate software at each part of the system
- 1. *McStas* for the beam transport and conditioning system
- 2. *Geant4* through the *ESS Detector Group Simulation Framework* for the detector system
- 3. Mantid (later Scipp) for data reduction

### Simulation and data workflow from moderator to data reduction





### Simulations vs. real tests



### Simulate and visualise the expected readout of the real detector modules

Real tests

- Full tests of the detector technology and data chain from detection to reduction software.
- Real data for testing calibration & data processing workflows
- Trouble shooting

#### Simulations

- Data for the Mantid *team to test capability for data streaming/reduction*
- Idealised data for data processing and reduction
- Bug finding
- Calibrating challenging wide angle detectors



McStas → Geant4 Ready for hot commissioning:

- 1. Data processing workflow from detector to Mantid
- 2. Calibration plan
- 3. Data reduction workflow

(i) Single tube containing 7 BCSs

(ii) 16 tubes



# Standard Samples

### Finding the right samples...

### Path from hot commissioning to early science

**Stage 1:** Compulsory calibration tests

Standard calibrating samples for SANS: Vanadium SDS Powder Silver Behenate Latex nanoparticles Gratings?

Round robin samples: Glassy carbon (NIST) Mesoporous silica (FSM-16) **Stage 2:** Early science tests - Samples selected to match the available instrument set-up

| INSTRUMENT<br>SET-UP            | SCIENTIFIC<br>CAPABILITY                                       | <b>POTENTIAL SAMPLES</b><br>(using the regular cell holder of<br>pre-commissioned sample<br>environments) |  |  |  |  |
|---------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|
| Only the rear<br>detector       | Low Q only, length<br>scales of 10-300 nm                      | Nanogels, surfactant self-<br>assemblies,<br>photoluminescent materials,<br>e.g. conjugated polymers      |  |  |  |  |
| Wide-angle<br>detector<br>banks | High Q only, length scales of 0.5-50 nm                        | Crystalline/mesoporous<br>materials, e.g. templated<br>organosilica                                       |  |  |  |  |
| Full detector coverage          | Simultaneously probe<br>multiple length scales<br>(0.5-300 nm) | Liquid crystal nanoparticles,<br>e.g. hexasomes, cubosomes<br>Wormlike micelles                           |  |  |  |  |

\* Samples should be stable for storage & readily available at the instrument

\*\* Samples will be provided by the instrument team or close collaborators

Stage 3: Early science - more complex samples/sample environment & full instrument set-up

Work with collaborators and expert users to:

- Investigate multiple length scales
- Perform experiments using flow e.g. rheology & microfluidics
- Use pre-commissioned in situ sample environments



# Thanks for listening!

Any questions?