

Example J- PARC Commissioning Imaging BL22

J-PARC Center, Japan Atomic Energy Agency Takenao Shinohara takenao.shinohara@j-parc.jp

Commissioning Workshop ESS-J-PARC: Instrument session / 11th Oct. 2022

RADEN team member

Takenao Shinohara Tetsuya Kai Kenichi Oikawa Yuhua Su Kosuke Hiroi Yusuke Tsuchikawa

Mariko Segawa Takeshi Nakatani SCROSS Hirotoshi Hayashida Joseph D. Parker Yoshihiro Matsumoto Yuki Nagai

> Shuoyuan Zhang Koji Kiriyama

Yoshiaki Kiyanagi Hirotaka Sato

Introduction of RADEN

Energy-Resolved Neutron Imaging System

The world first instrument dedicated to the pulsed neutron imaging

- Pioneering facility for Energy-resolved neutron imaging fully using short-pulsed neutrons' nature
 - Bragg edge imaging
 - Resonance absorption imaging
 - Pulsed polarized neutron imaging

✓ Leading neutron radiography & tomography facility in Japan

- Fine spatial resolution (> 10 μm)
- Large FoV (300 x 300 mm²)
- Flexible sample positioning
- Wide space for sample environment
- In-situ/in-operando imaging
- Development environment of pulsed neutron imaging technique and related devices
 - Phase contrast/dark field imaging
 - Detector test and development

Structure of RADEN instrument

Specification of RADEN

Beam line number: BL22, Moderator type: Decoupled liquid H₂

- ✓ Neutron flux :
 - 1.7 x 10⁷ n/sec/cm²@L/D=180 (E< 0.45 eV)
 - 1.1 x 10⁸ n/sec/cm²@L/D=180 (E< 1 MeV)
- ✓ Wavelength resolution:
 - Δλ/λ = 0.26% @L=18m , **0.20% @L=23m**
- ✓ Wavelength range:
 - λ < 8.8 Å @L=18m , < 6.9 Å @L=23m
- ✓ Field of View:
 - < 300 x 300 mm² (Camera type)
 - < 100 x 100 mm² (Event type)
- ✓ Spatial resolution:
 - > **10 μm** (Camera type) , > **100 μm** (Event type)
- Imaging detector systems:
 - Event type and Camera type detectors
- ✓ Sample environment:
 - Stages: large, medium, small, portable
 - Sample heater: infrared heating, electric heating

Review of Scientific Instruments, 91, 043302 (2020)

https://mlfinfo.jp/ja/bl22/

Available options

- ✓ **ToF Polarimetry system**:
 - Magnetic field imaging
- **Talbot-Lau interferometer**:
 - Phase contrast imaging
 - Dark field imaging
- Diffraction detector, Gamma-ray detector
 - Neutron diffraction measurements
 - Prompt gamma-ray analysis (PGA)

ToF Polarimetry system

Talbot-Lau interferometer

Neutron imaging detectors at RADEN

Conventional imaging radiography/tomography

Single-mirror camera system

Standard System

- Andor iKon-L, EMCCD
- Δx >30μm
- No TOF

Short-time/energy selective system

- sCMOS + Image intensifier
- Δx >50μm
- Synchronized imaging (<25Hz)
- Energy selection by ToF gate

Automated system for CT Scintillator : ZnS/LiF, GOS

High-resolution system

- Hamamatsu sCMOS (ORCA Flash)
- Magnification = x1 and x2
- Δx > 10μm
- No TOF
- Automated system for CT
- Scintillator : P43, GAGG

Camera type

Event type

Energy-resolved neutron imaging

<u>nGEM</u>

- Micro-pattern
- ¹⁰B (10% eff.)
- FOV: 10 \times 10 cm^2
- **Δx=1mm**, Δt=15ns,
- Count rate < 0.5 Mcps

<u>LiTA12</u>

- Li-glass scint. (23% eff.)
- FOV: 5 \times 5 cm^2
- **Δx=3mm**, Δt=40ns,
- Count rate = 6 Mcps

<u>µNID</u>

- Micro-pattern
- ³He (26% eff.)
- FOV: 10 \times 10 cm²
- **Δx=0.1mm**, Δt=0.25μs
- Count rate = 1 Mcps

RADEN history

RADEN is a relatively young instrument in MLF.

- ✓ Most of instruments in MLF were in user operation phase at the time of RADEN construction.
- ✓ Fortunately most of characterization methods of devices and neutronic performances were established already.
- Device control software was ready.
- -> Time for the commissioning was relatively short, and RADEN started to accept user programs quickly. 7

Commissioning history

	Beam power			Event & Milestone	Beam characterization	Device performance	Detector performance	Demonstrations
	300kW	2014	Nov.	Nov. 4th: Interlock test & radiation inspection Nov. 7th: First beam	Flux measurement (Gold foil activation method) #1 Beam size measurements (CCD) Flux measurement (Gold foil activation method) #2	Slit center position check Filter performance (3He monitor) Disk chopper phase check (3He monitor)	Scintillator test Uniformity, Luminosity, Spatial resolution	first CT test (CCD)
			Dec.		Pulse width measurements #1 Material: synthetic mica spatial uniformity measurements (3He monitor, scanning)	Filter performance (LiTA)	LiTA test HV scan, Count rate, Threshold nGEM test HV scan, Count rate	Bragg edge (nGEM)
		2015	Jan.	T0 chopper installation				
	400kW		Mar.	First user experiment (Friendly user)	Beam size measurements (reconfirmation, CCD) L/D measurements (3He monitor, CCD)	TO Chopper Phase delay adjustment and performance check Talbot-Lau interferometer Alignment & performance check	Continuing scintillator and counting detector performance test	Resonance absorption test (thermometry, LiTA) Phase imaging (CCD)
			Apr.			Polarization analysis system Alignment & performance check	uNID test HV scan, Count rate	
	500kW			Apr. 30th: Beam operation terminated due to the target trouble.	Back ground measurements Pulse width measurements #2 Material: La ¹¹ B ₆ , Natural Mica Detector: 3He counter		uNID, LiTA, nGEM test Count rate, Spatial resolution	Resonance absorption (LiTA) Polarization imaging (nGEM, uNID)
	500kW		Oct.	Oct. 31st: Beam operation resumed.			Scintillator test Luminosity check ThinGEM test	Imaging demonstration
J-PA		NovNov.9th: First "official" user program startNov.20th: beam operation terminated due to the target trouble again.						

Neutron intensity

Gold foil activation method

- ✓ We did several times with changing Gold foil positions and beam collimation conditions.
- ✓ Gold foils (1.5 x 1.5cm², t=50µm) were irradiated at L=18.2m and 14.4m.
- ✓ w/ and w/o Cd cover
- ✓ T0 chopper: ON and OFF
- ✓ Gamma-ray measurements of ¹⁹⁸Au

Neutron energy spectrum

- Detector: Low efficiency ³He monitor
- ✓ Detector position : ~15.5m
- Normalized by the result of Gold foil activation.
- Calculation: McStas simulation

-> Reasonable agreement with calculation in shape

Neutron energy spectrum

Filter performance test

Filters are installed so as to reduce gamma-ray back ground at highenergy region or to conduct epithermal neutron imaging without thermal and cold neutrons. ✓ Detector: ³He monitor, LiTA, nGEM, µNID

- ✓ Detector position : 19m
- ✓ Changing filters

Bi (25, 50, 75 mm), Pb (25, 50, 75 mm), Cd, Borosilicate glass, Acrylic resin

Neutron pulse shape

Single crystal diffraction

Sample: natural mica single crystal KAI₂AlSi₃O₁₀(OH)₂ Size: 50 mm x 10 mm x 1 mm (c-axis) c-axis length : 20 Å L1: 23m L2: ~1.2m Scattering angle 2θ ~170° Detector: ½ inch ³He counter 100 FWHM Mica obs. \cap sim. ۰þ 0 FWHM (µs)

Good agreement

with simulation

<u>3 4 5 6 7 8</u> 0.01

2

 $E_n(eV)$

3 14 5 6 78 0

10

Neutron beam size

- ✓ Detector: CCD cam. and ⁶LiF/ZnS scintillator
- Detector position : 23 m
- ✓ Changing L/D with changing collimation conditions.
- Prior to the measurements we took image of PE scattering so as to cancel scintillator inhomogeneity.

L/D

(b) Edge spread function

- ✓ Test object: Gd thin film pattern
- ✓ Object position : 18 m & 23m
- Changing L/D and detector separation from the test object
- -> Evaluating geometrical blurring by fit it with line spread function.

J-PARC

13

Neutron beam size and L/D (summary)

	Collimator	100x100	50.1mmф at 3.1m	26.4mmф at 4.3m	15mmф at 8m	6mmф at 11.15m	5mmф at 8m	2mmф at 8m
L=23 m	L/D (calc.)	230	398	720	1000	1975	3000	7500
	L/D (measured)	250	420	760	1090	2030	2970	7370
	Beam Size (mm) (calc.)	100	250	300	144	100	173	181
	Beam Size (mm) (measured)	104(H) 104(V)	255(H) 258(V)	300(H) 300(∨)	154(H) 155(V)	116(H) 103(V)	194(H) 189(V)	205(H) 196(V)

T0 chopper

neutorn count (1/pluse)

A TO chopper is installed so as to eliminate flash gamma-ray and to suppress high-energy neutron back ground.

- ✓ Phase delay check
- Performance test
 - Transmission at around TOF=0
 - stopping power of prompt pulse

Opening angle of a disk = 190°

Double disk chopper

A double disk low-speed chopper is used to define band width and wavelength range.

- Phase delay check \checkmark
- \checkmark Performance test
 - Transmission
 - Frame overlap

Opening angle = 20 deg.

Neutron detectors (event recording type)

Test menu

- **Basic operation**
- ✓ Maximum rate/linearity
- Spatial resolution/image uniformity \checkmark
- Time (TOF) resolution \checkmark
- Gamma sensitivity
- **Detection efficiency**

Uniformity of nGEM (bad example)

Detector performance: original, current and projected (summary)

18

Radiation dose inside the shield

Neutron dose rate measurements inside the shield with heavy shutter closed so as to come in the shield safely.

- Detector: REM counter
- Beam power: 300 kW
- Position: L=ca. 15m, on beam axis
- Blocker (light shutter): Open/Close

Shutter (BL22)	Blocker (BL22)	Shutter (BL21)	Neutron Dose rate in BL22
Close	Open	Open	0.80 μS/h
Close	Close	Open	0.05 μS/h

- ✓ 2.6 μ Sv/h at 1 MW is expected
- ✓ We decided to close blocker before entry
- ✓ Expected radiation source: penetration of shutter or neighboring beam line (BL21)

About RADEN Commissioning

- Commissioning team = Instrument group member Commissioning work has been done by RADEN instrument team.
- Instrument control -> iroha2 (python based software) Dr. Inamura will introduce and explain it.
- Special tools for commissioning?

 Pulse width : neutron diffraction measurements
 Neutron flux: Gold foil activation
 Spatial resolution and L/D: a test pattern made by Gd thin film
 We used several detectors for beam characterization.
 3He counter, monitor, 2D event type detectors, CCD cam, ...
- Data storage -> We use our own storage system.
- Documented? -> No. But mostly summarized in our instrument paper (and written in the log-books).

Thank you for your attention.20

