

EUROPEAN SPALLATION SOURCE

The Stacked Multi-Level Klystron Modulators for the ESS Linac

Carlos A. Martins ESS – Accelerator Division - RF Electrical Power Systems www.europeanspallationsource.se Commissioning of ESS – JPARC Workshop, 10th Oct. 2022

Synopsis – ESS facility

High Power Linear Accelerator: Energy: 2 GeV Rep. Rate: 14 Hz

• Current: 62.5 mA

Target Station He-gas cooled rotating W-target (5MW average power) 42 beam ports

> 16 Instruments in Construction budget

Committed to deliver First Science by 2028

Peak flux ~30-100 brighter than the ILL

Total cost: > 1843 MEuros 2013

Synopsis – ESS accelerator

Beam power on target: 125MW_{pk}, 5MW_{av}; Beam pulse length = 2.86ms; PRR = 14Hz

10th Oct. 2022 THE STACKED MULTI-LEVEL KLYSTRON MODULATORS FOR THE ESS LINAC

Baseline (end 2027):

- 1 RFQ;
- 5 DTL tanks;
- 36 Medium Beta SCRF cavities (1MW_{RF} each);
- 20 High Beta SCRF cavities
- (1MW_{RF} each)

<u>Upgrade:</u>

+ 64 High Beta SCRF cavities (1MW_{RF} each) (upgrade to 5MW average beam power)

ESS modulator development strategy #1

ESS has launched an Invitation To Tender for the design and construction of one 180kVA modulator (turn-key, functional specification):

- Contract awarded in Dec. 2011; Delivery May 2014 (30 months delivery time);

1st ESS modulator (monolithic topology, pulse transformer based): Rated @ 115kV/25A; 2.8ms/20Hz; 160kVA -> enough to power one 1.4MWpk klystron;

Limited performance:

- Rise time_(10-99%) = 350µs;
- Flat-top droop = 3%;
- Efficiency = 88%;
- Power density = 22kVA/m² (no space in RF Gallery)
- AC power quality issues (flicker, current harmonic distortion)

High capital cost:

- ~130 modulators needed

8 modulators per RF cell needed (Med-Beta, High-Beta)

ESS modulator development strategy #2

ESS has launched an Invitation To Tender for the design and construction of one 330kVA modulator (turn-key, functional specification):

- Contract awarded in June 2014; Delivery June 2017 (<u>36 months delivery time</u>);

> 2st ESS modulator (modular topology, HF transformers based):

Rated 115kV/50A; 3.5ms/14Hz; 330kVA -> enough to power two 1.4MWpk klystrons;

Better but still limited performance:

- Rise time_(10-99%) = ~120µs;
- Flat-top droop < 1%;
- Efficiency = 87%;
- Power density = 66kVA/m²
- Better AC power quality: still high current distortion;
- Reliability concerns due to huge number of components and limited design margins

<u>Still high capital cost:</u>

- ~65 modulators needed

ESS modulator development strategy #3 – SML modulator

ESS has decided to launch a collaboration with LTH / IEA Department, in view of designing and building a modulator prototype for ESS, following a novel topology:

> 3rd ESS modulator (Stacked Multi-Level topology)

Aimed at final ratings: 115kV/100A; 3.5ms/14Hz; 660kVA -> enough to power four 1.4MWpk klystrons; Reduced scale prototype (easily scalable) rated at: 115kV/20A; 3.5ms/14Hz; 130kVA

SML Modulator main parameters

• Main parameters of SML klystron modulators (as from SoW)

	-		-
Nominal pulse voltage amplitude	Uκ	-115 kV	
Nominal pulse current amplitude (sum of four outputs)	Ι _κ	4x25 A =100 A	
Nominal pulse power amplitude (sum of four outputs)	Ρκ	11.5 MW	
Nominal pulse repetition rate	PRR	14 Hz	exceeded
Nominal pulse width (at 50% of magnitude)	Τ _Ρ	3.5 ms	CACCUCU
Maximum pulse rise/fall times (1099% / 10010%)	T _R , T _F	120 µs	
Minimum flat-top duration	T _T	3.35 ms	
Maximum droop or slow oscillation at flat-top	Δυκ	1% of U _K	
(frequency range: < 0.3kHz)			
Maximum voltage ripple in the flat-top, rms	ũ _k		
- 0.3kHz > freq. range > 1kHz:		0.3% of U _κ	
- 1kHz > freg. range > 100kHz:		0.2% of U _K	met
- 100kHz > freg. range > 300kHz:		0.15% of Ü _K	
- 300kHz > freq. range:		0.3% of U _K	
Maximum pulse overshoot	UKOVS	2% of U _K	
Pulse to pulse reproducibility (Average voltage over flat-top)	PPREP	0.15% of U _K	
Pulse stability (average voltage over flat-top):	ū _k		
- Over 1 hour, without warm-up:		0.3% of U _κ	
- Over 24 hours, after 1 hour warm-up:		0.3% of U _K	ποτ met,
- Over 1 year, after 1 hour warm-up:		1% of U _K	but non-
Maximum energy in case of arc (arc voltage: 50V; with 4 HV output	E _{ARC}	10 J	critical
cables $<4m$ length per cable; with R=5 Ω in series with output, before arc)			critical
Minimum efficiency at nominal conditions		90%	
Maximum total power losses in air		4% of total	
		power losses	
Mains supply, AC power port (R, S, T)		3 x 600V, 50 Hz	
Mains supply, AC control port (ext. UPS)		3 x 400V, 50 Hz	
Cooling		Water cooled	
High voltage insulation type, at the oil tank level		Mineral oil	
Maximum audible noise, at 1m from any point of cabinet	An	75 dBA	
AC line power quality			
- Total Harmonic Distortion (THDi)	%	3	
- Flicker of current amplitude	%	5	

SML modulator schematics

10th Oct. 2022 THE STACKED MULTI-LEVEL KLYSTRON MODULATORS FOR THE ESS LINAC

Reduced Scale Prototype, rated at 115kV/20A ; 3.5ms/14Hz

Full Scale Units, rated at 115kV/100A ; 3.5ms/14Hz

- Total weight: < 12 tons (with oil);
- Total volume of oil: ~ 2000 litters;

~3.8_m Compact

Part I – Low Voltage power conversion cabinet

Power Stacks

Time [s]

• Active Vce clamping at turn-off;

AC line and DC filter inductors

New technology (Casted Iron Powder Inductors)

HF3-TG

A1PA1PA1PA1PA1PA1P

Main Capacitor Banks

- Polypropylene, dry, selfhealing type;
- 1.1kV / 3x(6x18mF)

Part I – Low Voltage power conversion cabinet

10th Oct. 2022 THE STACKED MULTI-LEVEL KLYSTRON MODULATORS FOR THE ESS LINAC

ess

Part II – High Voltage oil tank assembly

HV rectifier box

10th Oct. 2022 THE STACKED MULTI-LEVEL KLYSTRON MODULATORS FOR THE ESS LINAC

Arc Protection Box

RETURN

SS

E

RETURN

+ 15V

R9

÷

DC/DC 2

R7

ar

Part II – High Voltage Oil Tank Assembly

Oil cooling unit

(oil pump, filter, flow sensor, oil/water heat exchanger

Extraction and opening of oil tank assembly

10th Oct. 2022 THE STACKED MULTI-LEVEL KLYSTRON MODULATORS FOR THE ESS LINAC

Experimental results on resistive dummy load – HV Pulse Quality: Pulse-to-pulse reproducibility

@ 108kV/96A ; 3.5ms/14Hz
 (Pav = 508kW ; 90%)

@ 108kV/96A ; 0.5ms/1Hz (Pav = 5.2kW ; 0.9%)

@ 20kV/17A ; 0.5ms/1Hz (Pav = 170W ; 0.03%)

Experimental results on resistive dummy load – HV Pulse Quality: Power ramping up/down

Ramp-up/down 20-108kV; 3.5ms/14Hz

Ramp-up/down 20-108kV;

- \succ Unitary power factor;
- Flicker free operation (constant line currents)
- Pure sinusoidal current absorption

Experimental results on resistive dummy load – Power Losses and Efficiency

THE STACKED MULTI-LEVEL KLYSTRON MODULATORS FOR THE ESS LINAC

10th Oct. 2022

Experimental results on resistive dummy load – Arc simulation tests

Status of Installation & Commissioning

M8 to M12,

M14 to M18,

delivered

delivered

Courtesy Jema, S.A.

- All units tested in <u>HV dummy load</u> for >40 hours at ESS TS3, after FAT, before installation;
- M1: in operation >2'100 hours;
- M2, M3, M4, M5: in operation >100 hours
- M13: in operation (@50% power) >800 hours

Lessons learned

1)- Type of oil (MIDEL 7131 versus SHELL DIALA S3 ZX-IG):

- <u>MIDEL 7131</u>:
 - Biodegradable;
 - High fire flashing point (>300 °C);
- <u>SHELL DIALA S4 ZX-IG</u>:
 - Non-biodegradable;
 - Fire flashing point (~170 ° C);

2)- Type of hoses in oil filling pumps:

- Metallic Helix wire;
- Semi-conductive rubber;

3)- Power Stacks, from a specialized sub-contractor:

with embedded protections (well tuned & pre-tested in factory);

31

Acknowledgements

