Status of Accelerating Cavities

Y. Kondo, for J-PARC linac cavity group, Japan Atomic Energy Agency

2022/10/11

- Overview of the accelerating cavities of the J-PARC linac
- Recent operational topics
 - MPS scheme change for RFQ discharge
 - SDTL multipacting problem
- Summary

2022/10/11

50 mA in 2014

<image/>	Structure	4-vane RFQ
	f_0	324 MHz
	W _{in}	50 keV
	W _{out}	3 MeV
	Peak current	50 mA
	Vane length	3.623 m
	# of cells	317 + transition, fringe
	r ₀	3.49 mm
	ρ _t /r ₀ ratio	0.75 (ρ _t = 2.62 mm)
	Longi. vane shape	sinusoidal
	a _{min}	2.13 mm
	<i>m_{max}</i>	2.13
	$\phi_{ m s,max}$	-30.6 deg
aded 30 mA -> A in 2014 Y. Kondo ESS - J-PARC collabor:	V	81 kV
	Max. surface field	30.7 MV/m (1.72 <i>E_k</i>)
	Power dissipation	400 kW

2022/10/11

Structure	Alvarez DTL
f_0	324 MHz
Operation mode	2π
W _{in}	3 MeV
W _{out}	50 MeV
Section length	27.12 m
# of tanks	3
# of cells	146
Tank diameter	560 mm
Bore radius	6.5 - 13 mm
ϕ_{s}	-30 ~ -26 deg
E ₀	2.5 ~ 2.9 MV/m
ZTT	47 ~ 36 MΩ/m
Max. surface field	11.2 MV/m (0.63 E _k)
Power dissipation	3.3 MW for 3 tanks

2022/10/11

SDTL (Separated DTL)

Structure	Separated DTL
f_0	324 MHz
Operation mode	2π
W _{in}	50.1 MeV
W _{out}	190.8 MeV
Section length	91.2 m
# of modules	16
# of tanks / module	2
# of cells / tank	5
Tank diameter	520 mm
Bore radius	18 mm
$\phi_{ m s}$	-27 deg
E ₀	2.53 ~ 3.74 MV/m
ZTT	50 MΩ/m
Max. surface field	23.2 MV/m (1.3 E _k)
Power dissipation	16.6 MW for 32 tanks

2022/10/11

Y. Kondo ESS - J-PARC collabora Power dissipation

ACS (Annular Coupled Structure)

Structure	ACS CCL
f_0	972 MHz
Operation mode	π/2
W _{in}	190.8 MeV
W _{out}	400 MeV
Section length	108.3 m
# of tanks	46
# of modules	23
# of cells / tank	15
Bore radius	20 mm
ϕ_{s}	-30 deg
E_0	4.26 MV/m
ZTT	35.8 ~ 44.8 MΩ/m
Max. surface field	23.7 MV/m (0.85 <i>E_k</i>)
Power dissipation	33.4 MW for 46 tanks

2022/10/11

Operation statistics FY2019

- In FY2019, cavities are already almost stable.
- Availability requirement > 90%. 1% downtime of RFQ was not negligible.

Why we so suffered from RFQ discharge?

• Simply because RFQ field is high.

Maximum surface field (<i>E_k</i> = Kilpatrick limit)					
RFQ	DTL	SDTL	ACS		
1.7	0.63	1.3	0.85		

• RFQ has many functions. One of the most important is filtering unnecessary beam, both in space and time.

2022/10/11

Change of MPS condition for RFQ

IV. Reset MPS

Time

I.

II.

III.

IV.

- Standard process for cavity trip
 - ~1s for recover of vacuum condition around electrodes.
 - MPS is manually reset after checking the machine status.
 - According to operation experience,
 - Almost all RFQ discharge is slight and single.
 - Can recover easily form the very next pulse.
 - Negligible affect to beam loss
- Determined MPS is not necessary for RFQ trip due to single discharge.

Original

RF

Beam

Y. Kondo ESS - J-PARC collaboration workshop@Lund, Sweden

2020~: Omit MPS activation

II. RF off

I. Trip

~1 s

40 ms

~ 30 s

III. RF on

2020~: No loss time

~2019 : loss time ~30s

stopped by MPS.

(~1 s) Resume RF

Trigger : Discharge in the RFQ

 $(\sim 10 \ \mu s)$ Stop RF, then beam

(~30 s) Reset MPS by operators.

- I. Trigger : Discharge in the RFQ
- II. (~10 $\mu s)$ Stop RF activates the MPS.
- III. (**40 ms**) Resume RF
- IV. If not trip again, OMIT MPS

Improved RFQ operation

- Downtime due to RFQ trip is drastically reduced.
- Almost all RFQ MPS events occur in the accelerator study period.
- RFQ downtime in user run becomes negligible.

Y. Kondo ESS - J-PARC collaboration workshop@Lund, Sweden

Multipacting problem of SDTL cavities

 Due to exposure to humid air contaminated with concrete or soil components?
 2022/10/11 Y. Kondo ESS - J-PARC collaboration

M 100µs A Ch1 J 164mV

17.00 %

Ch1 200mV

Ch3 100mV

Ch2 200mV

Ch4 100mV

Observation and analysis

- 20

		S04A	S04B	S05A	S05B	S06A	S06B	JAEA
	2015				acetone disappear			solution result
	2016			acetone remain →recure		acetone disappear	acetone disappear	
	2017	acetone remain	acetone remain	acetone remain →recure				
	2018							
	2019			acetone remain →recure				
	2020			H ₂ SO ₄ remain →recure				
	2021			HCI/H ₂ SO ₄ disappear				

- We are employing four types of warm accelerating cavities with two different frequencies of 324 MHz and 972 MHz.
- All cavities are almost stable.
- Minor discharges of the RFQ are rather frequent, but the downtime was reduced by changing the MPS scheme.
- Some SDTL cavities are suffered from multipacting problem, but it is almost resolved.
- In conclusion, cavities of J-PARC linac are well operated. The operation will restart from November 1st after 4 month summer maintenance period.

2022/10/11