LA-UR-23-22495

Approved for public release; distribution is unlimited.

Title: Short-pulse Laser-driven Moderated Neutron Source

- Author(s):Vogel, Sven C.; Fernandez, Juan Carlos; Gautier, Donald Cort; Hollinger, Reed; Hunter,
James F.; Kleinschmidt, Annika; Knickerbocker, Kelly L.; Losko, Adrian Simon; Mitura,
Nikodem; Nelson, Ronald Owen; Rocca, Jorge J.; Roth, Markus; Schoenberg, Kurt Francis;
Tremsin, Anton S.
- Intended for: LENS Workshop on Laser driven Neutron Sources, 2023-03-01/2023-03-03 (Lund, Sweden)

Issued: 2023-03-09 (Draft)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Short-pulse Laser-driven Moderated Neutron Source

Sven C. Vogel¹, J. Fernandez¹, C. Gautier¹, R.C. Hollinger³, J. Hunter¹, A. Kleinschmidt², K. Knickerbocker¹, A.S. Losko⁴, N. Mitura², R. Nelson¹, J.J. Rocca³, <u>Markus Roth</u>², K. Schoenberg^{1,2}, A.S. Tremsin⁵

¹Los Alamos National Laboratory, Los Alamos, NM, U.S.A.
²TU Darmstadt, Darmstadt, Germany
³Colorado State University, Fort Collins, CO, U.S.A.
⁴FRM-2, TU München, München, Germany
⁵University of California at Berkeley, Berkeley, CA, U.S.A.

LA-UR 16-24633, 16-23796, 18-24935, 18-28584, 18-28739

K. Schoenberg^{1,2}, A.S. Tremsin⁵

¹Los Alamos National Laboratory, Los Alamos, NM, U.S.A. ²TU Darmstadt, Darmstadt, Germany ³Colorado State University, Fort Collins, CO, U.S.A. ⁴FRM-2, TU München, München, Germany ⁵University of California at Berkeley, Berkeley, CA, U.S.A.

LA-UR 16-24633, 16-23796, 18-24935, 18-28584, 18-28739

U.S. DEPARTMENT OF ENERGY Nuclear Energy

3D Reconstruction of isotope densities in dU-20Pu-10Zr-3Np-2Am (Transmutation fuel) using energy-resolved neutron imaging (ERNI)

- Pixel-wise reconstruction of areal densities followed by tomographic reconstruction creates 3D isotope density maps
- Requires short-pulsed neutrons

Allowable initial p/d pulse width should be less than required neutron pulse width for desired energy (~1µs for 10 eV epithermal neutrons) From: Gary Russell et al. ICANS-VIII Proceedings (1985)

al densities followed by ates 3D isotope density maps

LANSCE – 800 MeV linear proton accelerator, $\frac{1}{2}$ mile long, 100 μ A on target, 20 Hz, spallation \Rightarrow >\$1B investment, ~\$10M for new target (plus installation)

 \Rightarrow ~100 people to operate just the source \Rightarrow ~\$1M/month electricity bill

Accelerator shrinks from half mile to half micron Target/moderator shrinks from 3m to 3 cm Cost shrinks from ~1B\$ to ~10M\$ Flux shrinks from... Stay tuned! Roth et al., PRL 110, 044802 (2013)

http://physics.anu.edu.au/ampl/research/theoretical/theoreticalpage2.php

Los Alamos made significant contributions

Ion acceleration with lasers: Break out Afterburner (BOA) effect

Simulations on Roadrunner @ LANL First Experimental Proof on TRIDENT @LANL

BOA mechanism*:

- 1. Laser heats all the electrons within the spot to relativistic temperatures & drives an electron drift \sim c
- 2. Relativistic mass of electrons increases-> relativistic transparency
- 3. Volumetric laser-plasma interactions further drives electrons & electrostatic waves
- 4. Electrostatic waves drive ions, keep quasineutrality
- 5. Requires in practice nanofoil targets (& therefore high-contrast laser pulse)

a) Target Normal Sheath Acceleration (TNSA) phase b) Intermediate phase c) Laser Breakout Afterburner (BOA) phase

U.S. DEPARTMENT OF

ENERGY

Nuclear Energy

Los Alamos made significant contributions

Ion acceleration with lasers: Break out Afterburner (BOA) effect

Novel physics predicted and experimentally demonstrated:

- Chirped Pulse Amplification (CPA): ~1985
 (Nobel Price 2018: Gérard Mourou/École Polytechnique & Donna Strickland/Univ. of Waterloo)
- Target-sheath normal acceleration (TNSA): ~2000
- Break-out Afterburner (BOA): ~2010
 - Laser diodes, plasma mirrors etc. improve lasers in general
 - Sandwiched multi-nanolayer targets, coated targets etc. to be explored

a) Targe
 b) Interr
 c) Laser

ENERGY

 \Rightarrow Field of lasers and laser-matter interactions still young!

5. Requires in practice nanofoil targets (& therefore high-contrast laser pulse)

Nuclear Energy

CH₂ Targets

- Poly(4-methyl-1-pentene), trade name TPX (Mitsui, Inc.)
- Soluble in cyclohexane
- Full density films (800 mg/mL) dip- or spin-cast (<200 nm 1 um)
- Low density foams (5 50 mg/mL) produced by freeze-dip-casting, freeze drying (~50 um)

Full-density film

CD₂ Targets

- Deuteropolyethylene(85% D content)
- Soluble in hot toluene/ xylenes
- Full density films (940 mg/mL) drop-cast onto warm Si wafers (300 nm- 1um)

Roth et al., PRL 110, 044802 (2013)

Roth, Vogel et al. "Assessment of Laser-Driven Pulsed Neutron Sources for Poolside Neutron-based Advanced NDE – A Pathway to LANSCE-like Characterization at INL." LA-UR-17-23190. LANL (2017).

CH₂ Targets

• Poly(4-methyl-1-pentene), trade name TPX (Mitsui, Inc.)

Beam spot <10 micron

- Soluble in cyclohexane
- Full density films (800 mg/mL) dip- or spin-cast (<200 nm 1 um)
- Low density foams (5 50 mg/mL) produced by freeze-dip-casting, freeze drying (~50 um)

CD₂ Targets

- Deuteropolyethylene(85% D content)
- Soluble in hot toluene/ xylenes
- Full density films (940 mg/mL) drop-cast onto warm Si wafers (300 nm- 1um)

Providing deuterated thin-film targets at e.g. 10 Hz is active research area:

- Thin films/free-standing targets (TU Darmstadt, Tel Aviv University...)
- Deuterated liquid crystals (Ohio State Univ., Lawrence Livermore NL)
- Deuterated cryo-jets (Stanford)

The same lasers are used to mechanically shock materials ⇒ not a trivial problem...

Roth et al., PRL 110, 044802 (2013)

Roth, Vogel et al. "Assessment of Laser-Driven Pulsed Neutron Sources for Poolside Neutron-based Advanced NDE – A Pathway to LANSCE-like Characterization at INL." LA-UR-17-23190. LANL (2017).

Several production reactions: ⁹Be(d,n), ⁹Be(p,n), and deuteron breakup reaction^{*}

Neutrons resulting from deuteron breakup travel mostly forward

- \Rightarrow Easier to capture majority of produced neutrons in moderator
- \Rightarrow Much less complex radioactive target inventory than spallation or reactor
- \Rightarrow No shielding for 100 MeV neutrons

^{*} J. R. Oppenheimer, Phys. Rev. 47, 845 (1935), R. Serber, Phys. Rev. 72, 1008 (1947)

Neutron Production LDNS vs. SNS

U.S. DEPARTMENT OF

ENERGY

Nuclear Energy

neutron production cross section (b/lethargy)

- LDNS utilizing deuteron breakup (or photoneutrons) requires much less shielding than spallation neutron source
- Neutrons produced with directionality provide ~orders of magnitude better source-to-moderator coupling

ENERGY Nuclear Energy How many neutrons can we get? And where?

Results for different laser powers:

500 J and 500 fs VULCAN (sub-optimal contrast): 10^9 n/sl80 J and 600 fs TRIDENT (high contrast):>10^{10} n/s60 J and 450 fs PHELIX (high contrast):>10^{10} n/s

Contrast is more crucial than laser power, as suggested b and BOA!

(...and 10⁻¹⁰ pre-pulse on a PW laser is still enough energ_ destroy the target before anything happens!)

ns!) Target thickness is crucial, as suggested by BOA Contrast is of paramount importance!

Thickness must match laser energy and pulse duration to obtain optimal yield \Rightarrow need to know what we are doing! TRIDENT had "older" glass optics \Rightarrow needed to cool down lenses for 90 minutes between shots

Roth et al., PRL 110, 044802 (2013), Fernandez et al., Physics of Plasmas, **24** 056702 (2017)

Results from last TRIDENT Campaign 2016

- Installed 3 HIPPO panels (24 ³He tubes each) and Tremsin TOF imaging detector at TRIDENT
- TOF imaging detector: (1.23 ± 0.09)×10⁵ epithermal and thermal events (detector shut off during γ-flash) on 28x28 mm² (7.84 cm²) at 1.7m from source (perpendicular to laser pulse) ⇒ (5.51±0.5)×10⁹ n/pulse at source (without much optimization...)
- Observed indium resonance with single pulse

ENERGY

- Detected thermal spectrum with ³He diffraction setup
- Need a high rep-rate (1Hz...) source to optimize, calibrate etc.

Fast Neutron & Hard X-ray imaging

TRIDENT n-radiograph using a-Si Flat Panel with poly+ZnS(Cu) converter, single pulse, July 6th 2016

U.S. DEPARTMENT OF ENERGY Nuclear Energy

Hard X-ray imaging

(protons on W instead of deuterons on Be) Kaleidoscope Target Comparison: DARHT vs. Trident (DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility)

DARHT Axis 1, 19mm Cathode, ~750µm source size

TRIDENT (raw image) <125µm source size (determination limited by detector pixel size)

Order of magnitude smaller source size for the laser (magnification) compared to optimized X-ray radiography facility with ultra-short pulse (no motion blur)! Then TRIDENT was shutdown...

What are the prospects if deuteron energy increases?

Using BOA: 10¹² deuterons @ 20 MeV yield is consistent with data from 1975

Second campaign: Higher energies and higher D₂ resulted in more than 10¹¹ neutrons (4Pi equivalent) @ 70 MeV and up to energies of 200 MeV

The forward D_2 breakup is already comparable to $2x10^{11}$ n/pulse (in 4Pi)

Using BOA and novel Targets (cryo) VPIC indicate 200 MeV/u ...

Changing to Ta or Cu converter reduces safety hazards on the converter

 \bigcirc 10 Hz: 1 kW HESP laser, diode pumped, 20 kW electrical input > 10¹³ n/s possible (majority reaches 10³ moderator)

Cross-section for neutron production increases better than linear with deuteron energy ⇒ next generation lasers will produce more neutrons! What about state-of-the-art lasers?

U.S. DEPARTMENT OF

FNFRGY

Nuclear Energy

European Extreme Light Infrastructure (ELI) will allow pulsed proton acceleration comparable to current linacs used for large-scale neutron production

(ELI Prague total budget: € 278 million for several lasers, buildings, labs etc.)

- 25J laser pulses at up to 3.3 Hz (burst mode, short time) or 1 Hz or less for hours
- Limiting factor for laser repetition rate is cooling of optics
- Goal of the beam time: Explore X-ray source size smaller than conventional X-ray sources for radiography applications
- X-rays produced by sending laser pulses on 1 to 3 mm thick tungsten disks ⇒ Bremsstrahlung
- Some Bremsstrahlung X-rays are enough high in energy to produce photo-neutrons
- Brought neutron detectors to characterize source
- Uneven surface of tungsten disks (micrometers) requires prescan to adjust laser focus to maximize yield
- Home-made motion control (alignment, rotation etc.)

Setup at Colorado State University

- X-ray CT reconstruction of turbo pump
- ~1000 single shots

Small source size provides great magnification

- Bubble chambers ~uniform sensitivity for neutrons between 0.3 and 35 MeV ⇒ neutrons as produced, not thermal neutrons
- Number of bubbles proportional to dose
- Dose ~proportional to number of neutrons
- Normalize by solid angle (distance, chamber dimensions)

Bubble Chambers Results #1

Bubbles after 10 laser pulses on 3mm W disk

1" thick tungsten to shield X-ray radiography flat panel ⇒ secondary target?

Bubble Chambers Results #2

- Imm tungsten target produces ~twice as many neutrons as 2mm and 3mm
- Off-center shift observed (no W block)
- Total number consistent with ~1 million neutrons per pulse

● 1mm W ● 2mm W ● 3mm W

TOF Imaging Detector

- Positioned ~70° off from direct beam, viewing moderator
- Moderator either 1x1x2" poly piece inside or 1x8x2" poly piece outside the chamber
- Distance moderator to detector 2.15m or 1.87m (EMP, gammas)
- Detector shielded by Pb bricks

MCP & TimePix chip

512x512 pixels, 28x28mm²

- FOV fully covered with 0.1mm Au foil (stops gammas, potential resonance)
- FOV partially covered with Indium (absorber)
- Detected ~10 events per pulse with TOF consistent with moderated neutrons
- No moderator ⇒ no events
- Total events also consistent with ~1M neutrons produced per pulse

Moderated Neutrons

Few events recorded (small solid angle, only 100 shots possible) show attenuation where Indium was located (right side)

- D₂O microjets provide deuterons for pitcher/catcher
 - ⇒ Deuteron break-up
 - ⇒ Should be higher yield than photoneutrons
- Entire March at CSU planned for SLAC team
- If bubble chamber results are promising, LANL, UC Berkeley, and TUM folks may flock to Fort Collins last week of March
- Try to get 3×24 10" He-3 tubes, MCP TimePix and Losko camera running if one or two orders of magnitude more neutrons are available

High-repetition-rate, multi-MeV deuteron acceleration from converging heavy water microjets at laser intensities of 10²¹ W/cm²

FIG. 1. Simplified schematic of the experimental setup for 0.5Hz deuteron acceleration from a heavy water jet. A Thomson parabola equipped with a high repetition-rate compatible microchannel jate (NLOP) detector was positioned in the laser forward direction. The sum of 60 consecutively recorded raw MCP images for a laser energy of 5.5 JL (12 TW) is shown in the bothm right convert with the individual cases identified for fatterine lassing schematics.

Key parameters for lasers used for particle acceleration:

- Laser energy \Rightarrow number of photons
- Wavelength
- Pulse duration
- Repetition rate
- ??
- What are optimal parameter for a laser-driven neutron source?
- How do these parameters depend on the target & reaction used for neutron generation?

	TRIDENT@LANL	APPOLON@CEA	ALEPH@CSU	PHELIX@GSI
Energy on target [J]	70	70	10	70
wavelength [nm]	1050	800	800	1050
wavelength [m]	1.05E-06	8.00E-07	8.00E-07	1.05E-06
frequency	2.86E+14	3.75E+14	3.75E+14	2.86E+14
rep rate [Hz]	0.0002	1	1	0.0002
nulse length [fs]	600	24	40	600
nulse length [s]	6F-13	2 4F-14	4F-14	6F-13
puise length [3]	01-13	2.46-14	46-14	01-13
Beam spot diameter [cm]	0.005	0.005	0.005	0.005
Beam spot area [cm^2]	1.9635E-05	1.9635E-05	1.9635E-05	1.9635E-05
Power [W]	1.17E+14	2.92E+15	2.50E+14	1.17E+14
Power [PW]	0.12	2.92	0.25	0.12
photons per pulse	3.70E+20	2.82E+20	4.03E+19	3.70E+20
photons per pulse [mole]	6.14E-04	4.68E-04	6.69E-05	6.14E-04
photons per pulse [millimole]	0.61	0.47	0.07	0.61
Waves per pulse	171	9	15	171
	D20	W 1.005.00		
target thickness [nm]	1000	1.00E+06		
target thickness [cm]	1.00E-04	1.00E-01		
density [g/cm^3]	1	19.3		
volume in beam [cm^3]	1.96E-09	1.96E-06		
mass in beam [g]	1.96E-09	3.79E-05		
molar mass [g/mol]	20.01528	183.84		
molecules in beam [mole]	9.81E-11	2.06E-07		
electrons per molecule	10	74		
electrons in beam [mole]	9.81E-10	1.53E-05		
photons per electron H2O	626297	477179	68168	626297
photons per electron W	40	31	4	40

How far away are we from Laser-LANSCE?

- ~10¹⁰ n/pulse achieved @ TRIDENT (March & July 2016, 70J output energy ⇒ 20 MeV deuterons 70J/600 fs=0.1 PW)
 - Neutrons pre-dominantly forward
 - \Rightarrow majority reaches moderator
 - \Rightarrow ~10¹⁰ moderated n/pulse (~1 ns pre-moderation pulse width) middle heatsink plate

LANSCE:

ENERGY

Nuclear Energy

- \Rightarrow 100 μA proton current @ 20 Hz, 800 MeV
- \Rightarrow ~3×10¹³ p/pulse
- \Rightarrow ~20 n/spallation process
- \Rightarrow ~6×10¹⁴ n/pulse, but isotropic, out of a 10cm \emptyset , 20cm target)
- \Rightarrow ~1×10¹³ moderated n/pulse (~270 ns pre-moderation pulse width, ~2% of neutrons cross moderator surface)
- TRIDENT LANSCE: 10¹⁰: 1×10¹³
- Laser system, deuteron & neutron target optimizations: Factor $10 \Rightarrow 10^{11}$
- kJ laser: Breakup cross-section predicts factor $\sim 20 \Rightarrow 2 \times 10^{12}$
- 0.2×10¹³ moderated n/pulse feasible (have 5 lasers?)
- Smallest source-to-sample distance at LANSCE: ~6 m
- Source-to-sample distance for laser-driven source: <2 m (1/L² ~factor 10) ⇒ setup for e.g. resonance imaging/NRTA/mini-HIPPO possible!

Los Alamos

Neutron production cross section for 1.7-GeV protons on tungsten

Linear accelerator

- Lots of energy used to keep protons together over ~km distance
- Proton storage ring needed to compress

Target system

- Isotope inventory needs to be monitored
- Complex, heavy & expensive system in itself

Target building

- Shielding must be designed for neutrons of energy close to proton energy
- Expensive, heavy, drives closest sample position to >15m from source (1/L² bites...)
- Significant amounts of funding to manage sagging of floor in the building to keep beamlines aligned
- Huge chunk of cost of source

LDNS would not need any of that

Picture credit: J. Womersley ESS slides, August 2018 & ESS website "How it works

"Workshop on laser-driven neutron sources", Vogel et al., Neutron News 29 (2018)

Slide courtesy of T. Dittmire/National Energetics, from

"Workshop on laser-driven neutron sources", Vogel et al., Neutron News 29 (2018)

Two architectures for high energy DPSSL recently demonstrated: the LLNL's "HAPLS", and Rutherford's "DiPOLE100"

Slide courtesy of C. Haefner/LLNL from

"Workshop on laser-driven neutron sources", Vogel et al., Neutron News 29 (2018)

- LLNL's SHARC could be a workhorse to drive Laser-LANSCE
- Laser industry (Trumpf et al.) provides industrial (e.g. welding) and military lasers
 - ⇒ reliability even in rugged environments proven
 - ⇒ mobile pulsed neutron sources for characterization

	PPIF	System Parameter	Specification	
E. C		Compressed Peak power	1 PW	
		Compressed pulse energy	150 J	
T		Pulse duration	150fs	The second second
	VA	Spectral bandwidth	15nm	
	1	Pulse Repetition Rate	10Hz	
	Contrast (@ 100ps) *Employing advanced techniques		10 ⁹ :1 *10 ¹¹ :1	
02	///	Meeting specs simultaneously	>99.8%/shots	
		Concept of Operations with autormated controls	24/7 ops	

Scalable High-average-power Advance Radiographic Capability (SHARC)

are conceivable ("LANSCE-on-a-truck")

⇒ Cost for laser diodes follows a Moore's Law, cost will continue to go down

ENERGY Nuclear Energy Can lasers improve peak neutron flux?

Cross-section for neutron production increases with deuteron energy ⇒ next generation lasers will produce more neutrons!

\$1B user facility allows installation of multiple laser/target systems providing neutrons to the same moderator within a fraction of the ~1 μ s moderation time (<1 ns initial pulse width)

- "A breakthrough in local, on-demand X-ray synchrotron light"
- Commercial provider: Lyncean Tech, Fremont, CA
- Undulator/wiggler replaced by laser \Rightarrow much smaller ring
- Energy 20 to 80 keV (similar to APS, DESY etc.)
- Total Flux (~4% BW) 4mrad cone: up to 10¹¹ ph/s
- Price: ~\$11M, plus 5%/year for service/operation

CAN THERE BE A NEUTRON SOURCE NEXT?

- ~1Hz pulsed laser beamtimes scheduled for LDNS
- Targets (films, D₂ cryo jets, liquid crystals) are developed
- Need suitable neutron diagnostics to characterize source and produce right demonstration data for potential funding agencies
 - LANSCE-in-a-box combines
 - Dual PMT ⁶Li scintillator (resonance spectroscopy)
 MCP TOF imaging detector (energy resolved neutron imaging)
 Scintillator screen, mirror, CCD camera (radiography)
 Calibrated sample position
 ³He tubes (diffraction, 5 panels of 24 each)
 - Beam monitor (fission chamber)
 - Also prototype for multi-probe beamline
- Under construction, to be calibrated on FP5@LANSCE this summer

Few 1,000 (at best...) laser driven neutron pulses produced so far in history of humankind ⇒ early stages!

Applications of laser-driven neutron sources:

- Neutron resonance imaging and NRTA need neutron pulses $<1\mu$ s
- CT and flash-radiography with neutrons and hard X-rays
- Potentially replace conventional larger accelerator sources

Now is the time to develop laser-driven neutron sources!

- Avoid charge density problems of conventional accelerators
- Current available technology at the verge of being useful
- Much lower investment and operation cost than spallation sources
- Technology developing fast \Rightarrow neutron part needs to be ready!
- Optimization potential from unknown physics in laser/matter interactions (sandwiched nano-layer targets, conduction layer on opposite side etc.)
- Parameters for LDNS (need Joules & contrast) differ from state of the art in laser facilities (ultra- short pulses, high power)
 firstage
 second stage

Los Alamos Neutron Science Center

Los Alamos, Oak Ridge, and Idaho National Laboratories: Fuel Development & Accelerate Licensing

an AFC-2 irradiated fuel pin", LA-UR 13-2167

Develop Pool-side Capability

