

Characterization of neutron generation at APOLLON

Ronan Lelièvre

J. Fuchs, T. Waltenspiel, W. Yao, A. Allaoua, Q. Ducasse, F. Trompier and the APOLLON team

Laboratoire pour l'Utilisation des Lasers Intenses (LULI)

European Research Council

Outline

APOLLON facility overview

Experimental rooms, beam characteristics

Laser-accelerated protons

Proton spectrometry via Thomson Parabola using CMOS sensors Laser energy/protons transfer optimization (Double plasma mirror)

Neutron generation Pitcher-catcher technique Neutron production simulations

Neutron detection Several diagnostics

Prospects and future developments Laser energy increasing and improvement of neutron production

Outline

APOLLON facility overview Experimental rooms, beam characteristics

Laser-accelerated protons Proton spectrometry via Thomson Parabola using CMOS sensors Laser energy/protons transfer optimization (Double plasma mirror)

Neutron generation Pitcher-catcher technique Neutron production simulations

Neutron detection Several diagnostics

Prospects and future developments Laser energy increasing and improvement of neutron production

Location of APOLLON

Facility structure

OPCPA front end 5 Ti:Sapphire amplification stages

F2 – secondary beam (15J, 24fs → 0.6PW) F1 – main beam (220J, 22fs → 10PW)

max. 1 shot/min

Outline

APOLLON facility overview Experimental rooms, beam characteristics

Laser-accelerated protons

Proton spectrometry via Thomson Parabola using CMOS sensors Laser energy/protons transfer optimization (Double plasma mirror)

Neutron generation Pitcher-catcher technique Neutron production simulations

Neutron detection Several diagnostics

Prospects and future developments Laser energy increasing and improvement of neutron production

Commissioning of F2 beam in 2021

"K. Burdonov et al., Matter Radiat. Extremes 6, 064402 (2021)"

Pulse duration : 24 fs On-target laser energy : ≈ 10J

About 41% of laser energy within a disk of 2.8 μm FWHM

 \rightarrow \approx 2x10²¹ W/cm²

Real-time proton spectra acquisition

Double Plasma Mirror (DPM) improves laser contrast and induces:

 \rightarrow possibility to shoot thinner targets (from several µm to tens of nm)

Ultra-high contrast possible with DPM

Double Plasma Mirror (DPM) improves laser contrast and induces:

- \rightarrow possibility to shoot thinner targets (from several μ m to tens of nm)
 - \rightarrow better proton cutoff energies (from 28 to 36 MeV)
 - ightarrow improvement in neutron production yield

 \rightarrow Reduction in production of gamma-rays

But loss of on-target energy (efficiency $\approx 60\% \rightarrow \approx 6$ J/shot)

Outline

APOLLON facility overview

Experimental rooms, beam characteristics

Laser-accelerated protons Proton spectrometry via Thomson Parabola using CMOS sensors Laser energy/protons transfer optimization (Double plasma mirror)

Neutron generation Pitcher-catcher technique Neutron production simulations

Neutron detection Several diagnostics

Prospects and future developments Laser energy increasing and improvement of neutron production

Pitcher-catcher technique

Neutron generation

Pitcher-catcher technique on low-Z materials

 N_p (E > 10 MeV) < 1% of total proton number N_p (2 < E < 10 MeV) > 33%

\rightarrow Low-Z materials are preferred

Simulation of neutron emissions

"V. Horný et al., Scientific Reports 12, 19767 (2022)"

Fluka simulations (Vojtech Horný, LULI) of neutron emissions using low-Z converter :

 \rightarrow Possibility to optimize certain properties according to applications (e.g. flux for r-process study)

Optimization of the total yield only :

ightarrow To test our detection capabilities

A.

<u>Proton spectrum :</u> - typical direct shot (without DPM) with 12J on-target energy (1.5 μm Al)

- Cutoff energy : 20.6 MeV
- extrapolated at low energy
- 3.2x10¹² protons/shot
- (3.4x10¹¹ protons between 5 MeV and cutoff energy)

Simulation of neutron emissions

GEANT4 simulations (Physics List "QGSP_BIC_AIIHP")

4mm thick LiF converter

→ Total number of neutrons : 2.947x10⁸ neutrons/shot

GEANT4 simulation: angular distribution

- 1.872x10⁷ neutrons/sr at 45° 1.553x10⁷ neutrons/sr at 90°
- 1.215x10⁷ neutrons/sr at 180°

Outline

APOLLON facility overview

Experimental rooms, beam characteristics

Laser-accelerated protons Proton spectrometry via Thomson Parabola using CMOS sensors Laser energy/protons transfer optimization (Double plasma mirror)

Neutron generation Pitcher-catcher technique Neutron production simulations

Neutron detection Several diagnostics

Prospects and future developments Laser energy increasing and improvement of neutron production

Diagnostics

Three types of detectors

- Activation samples
- Bubble detectors
- Time-of-Flight detectors

\rightarrow Activation of samples using different reactions to retrieve neutron energy

Several criteria for samples selection:

- Reactions with interesting cross-sections and spanning a wide spectrum
- Radionuclides with high intensity gamma emissions

- ...

Layer #1	Layer #2	Layer #3	Layer #4	Layer #5
(n,g) reactions	(n,n') or (n,p) reactions	(n,a) reactions	(n,2n) reactions	(n,3n) or (n,4n) reactions
Au, Cd, Cu, Mn, Ni, Sn, W, Zn,	Al, In, Ni, Rh, S, Zn	Al, Fe, Mg	Co, Cu, Nb, Ni, Sc, Y, Zr	Bi

Activation samples

GEANT4 activation simulations to find best samples:

- Copper

Activation samples

GEANT4 activation simulations to find best samples:

- Copper
- Indium

Activation samples

GEANT4 activation simulations to find best samples:

- Copper
- Indium
- Magnesium

Same activation samples for a session of 20 shots to accumulate activities

Material	Reaction	Half- life (h)	E _x (keV)	A _{mes.} (Bq)	A _{sim.} (Bq)
Cu	⁶³ Cu(n,g) ⁶⁴ Cu	12.701	511	(waiting for calibration)	29.06

Same activation samples for a session of 20 shots to accumulate activities

Material	Reaction	Half- life (h)	E _X (keV)	A _{mes.} (Bq)	A _{sim.} (Bq)
Cu	⁶³ Cu(n,g) ⁶⁴ Cu	12.701	511	(waiting for calibration)	29.06
In	¹¹⁵ ln(n,n') ^{115m} ln	4.486	336.2	<mark>22.72 ± 3.16</mark>	<mark>42.92</mark>

Same activation samples for a session of 20 shots to accumulate activities

Material	Reaction	Half- life (h)	E _x (keV)	A _{mes.} (Bq)	A _{sim.} (Bq)	
Cu	⁶³ Cu(n,g) ⁶⁴ Cu	12.701	511	(waiting for calibration)	29.06	Interesting values at - 10J
In	¹¹⁵ ln(n,n') ^{115m} ln	4.486	336.2	<mark>22.72 ± 3.16</mark>	<mark>42.92</mark>	
Mg	²⁴ Mg(n,p) ²⁴ Na	14.997	1368.6	< LoD*	0.34	

Lest.

- 2 set of bubble spectrometer placed 20 cm from the converter (during the same session of 20 shots)
- Bubble dosimeters taped to the chamber and filmed by a camera to see neutron generation shot-to-shot

Left.

- \rightarrow Measured neutron spectrum greater than simulated one, unlike the activation diagnostic.
- \rightarrow Bubble detectors don't seem totally insensitive to gamma-rays.

Time-of-flight detectors

- PVT-based scintillators (EJ-254)
- 1" diameter, 40cm long cylinders with PMT on either side

- PVT-based scintillators
- 1" diameter, 40cm long cylinders with PMT on either side

Gamma flash with and without DPM

Shots <u>without</u> converter, same cutoff energy: ≈ 21 MeV

without DPM (1.5µm Al)

Detector #17

nToF signal with and without DPM

Shots with converter, same gamma flash as before

without DPM (1.5µm Al)

with DPM (250nm Si)

02/03/2023

nToF signal analysis

Gamma flash subtraction

Calibration

mV/pC signal \rightarrow number of scintillation photons

Number of scintillation photons \rightarrow Number of neutrons

July .

Simulations of scintillation signal with neutrons of different energies

nToF spectrum

More high energy neutrons with DPM

without DPM (1.5µm Al)

with DPM (250nm Si)

Outline

APOLLON facility overview

Experimental rooms, beam characteristics

Laser-accelerated protons Proton spectrometry via Thomson Parabola using CMOS sensors Laser energy/protons transfer optimization (Double plasma mirror)

Neutron generation Pitcher-catcher technique Neutron production simulations

Neutron detection Several diagnostics

Prospects and future developments

Laser energy increasing and improvement of neutron production

3 PW shots: more protons and higher cutoff energy expected

- \rightarrow improvement of neutron production yield
- \rightarrow possibility to reach spallation reactions using high-Z material converters (like Pb)

More neutrons = better nToF signal, better precision on bubble detectors and more activation in the activation spectrometer.

10 PW shots → early 2024

Thank you for your attention

European Research Council

