

Ishay Pomerantz The School of Physics and Astronomy, Tel Aviv University

Nuclear Photonics

NePTUN Nuclear Photonics at Tel-aviv University research group

CHIRPED PULSE AMPLIFICATION

NIF: 2 MJ / 4 ns = 500 TW

CPA laser: 15 J / 30 fs = 500 TW

CHIRPED PULSE AMPLIFICATION

International Committee On Ultrahigh Intensity Lasers www.icuil.org			FSU	IOQ/Friedrich Schiller University of Jena	Jena	KyoU	Kyoto University, Institute for
			GAP-Bio	Université de Genève, GAP-Biophotonics	Carouge	L2I	Laboratory for Intense Laser
			GPI	Graduate School for the Creation of New Photonics Industries	Hamamatsu	LBNL	Lawrence Berkeley National
AFRL	Air Force Research Laboratory	Dayton	GSI	GSI-Helmholtzzentrum fuer Schwerionenforschung GmbH	Darmstadt	LC	Centrum Laserowe, Instytuti
ALLS	Advanced Laser Light Source	Varennes	нни	Heinrich Heine Universität	Düsseldorf	LFRC	Laser Fusion Research Cente
APOLL	APOLLON at Université Paris Saclay	Saclay	HIJ	Helmholtz Institute Jena	Jena	LLAMS	LaserLab Amsterdam
AWE	Atomic Weapons Establishment	Aldermaston	HiLASE	HiLASE	Dolní Břežany	LLC	Lund Laser Center
BARC	Bhabha Atomic Research Centre	Mumbai	HUJ	Hebrew University of Jerusalem	Jerusalem	LLE	Laboratory for Laser Energet
BNL	Brookhaven National Lab, ATF	Upton	HZDR	Helmholtz Zentrum Dresden- Rossendorf	Dresden	LLNL-NIF	Lawrence Livermore Nationa
CAEP	Chinese Academy of Engineering Physics	Mianyang	IAP	Institute of Applied Physics, Russian Academy of Sciences	Nizhny Novgorod	LLNL-JLF	Lawrence Livermore Nationa
COLA	Centre Optique et Laser en Aquitaine	Bordeaux	ICL	Imperial College London 🔗	London	LMU	Ludwig Maximilians- Univers
CESTA	Centre d'Etudes Scientifiques et Techniques d'Aquitaine	Le Barp	IHCE	Institute of High Current Electronics	Tomsk	LNF	Laboratori Nazionali di Frasc
CLPU	Centro de Laseres Pulsados	Salamanca	ILE	Institute for Laser Engineering, Osaka University	Osaka	LOA	Laboratoire d'Optique Applic
CLUPS	Laser Center of the University of Paris - Sud	Paris	ILIL	Intense Laser Radiation Laboratory	Pisa	LULI	Laboratoire pour l'Utilisatior
CoReLS	Center for Relativistic Laser Science	Gwangju	INFLPR	National Institute for Laser, Plasma, and Radiation Physics	Magurele	MBI	Max Born Institute
CRIEPI	Central Research Institute of Electric Power Industry	Yokosuka	IOE	Instytut Optoelektroniki, Wojskowa Akademia Technology	Warsaw	MPQ	Max Planck Institute for Qua
CREOL	Center for Research in Electo-Optics and Lasers	Orlando	IOP	Institute of Physics, Chinese Academy of Sciences	Beijing	NCU	National Central University
CSU	Colorado State University	Fort Collins	IPPLM	Institute of Plasma Physics and Laser Microfusion	Warsaw	NII-OEP	Scientific Research Inst. for
ELI-HU	Extreme Light Infrastructure Attosecond Light Pulse Source	Szeged	JIHT	Joint Institute for High Temperatures	Moscow	NRL	Naval Research Laboratory
ELI-CZ	Extreme Light Infrastructure Beamlines	Dolní Břežany	KAERI	Korean Atomic Energy Research Institute	Daejoen	OsaU	Osaka University
ELI-NP	Extreme Light Infrastructure Nuclear Physics	Magurele	KPSI	Kansai Photon Science Institute	Kizugawa	OSU	Ohio State University, Scarle
EXFEL	European XFEL, High Energy Density Group	Schenefeld	KQALS	Kaifeng Qiyuan Advanced Light Source Research Institute	Kaifeng	OXFD	University of Oxford

COMPACT PARTICLE ACCELERATORS

Nuclear Photonics is about taming relativistic light-matter interaction

Nuclear Photonics

The interaction of relativistic light with wavelength-scale objects

High harmonic generation from Plasma Mirrors

THE NUCLEAR PHOTONICS RESEARCH GROUP AT TEL-AVIV UNIVERSITY

Israel Ministry of Science & Technology

BSF

United States - Israel Binational Science Foundation

THE LASER SYSTEM

RESEARCH PROJECTS

Porat, E, et al. "Spectral detuning of relativistic surface harmonics." *Physical Review Research* 4.2 (2022): L022036.
Porat, E, et al. "Spiral phase plasma mirror." *Journal of Optics* 24.8 (2022): 085501.
Yehuda, H, et al. "Annular coherent wake emission." *Optics Letters* 46.18 (2021): 4674-4677.
Porat, E., et al. "Diffraction-limited coherent wake emission." *Physical Review Research* 3.3 (2021): L032059.
Cohen, I, et al. "Optically switchable MeV ion/electron accelerator." *Applied Sciences* 11.12 (2021): 5424.
Gershuni, Y, et al. "Automated Delivery of Microfabricated Targets for Intense Laser Irradiation Experiments." *JoVE* 167 (2021): e61056.
Noam, O, et al. "Fast neutron resonance radiography with full time-series digitization." *NIM-A*, 955 (2020): 163309.
Gershuni, Y, et al. "A gatling-gun target delivery system for high-intensity laser irradiation experiments." *NIM-A* 934 (2019): 58-62.
Kishon, I., et al. "Laser based neutron spectroscopy." *NIM-A* 932 (2019): 27-30.

UNDEPLETED DIRECT LASER ACCELERATION

ACCELERATING CHARGED PARTICLES USING LIGHT

Single electron under the force of an EM plane wave

The ponderomotive force

Add a slowly changing spatial envelope $\overrightarrow{\tilde{E}}$ to the plane wave

$$\vec{E}(\vec{r},t) = Re\{ \vec{\tilde{E}}(\vec{r},t)e^{-i\omega t} \}$$

Separate the charge position to an oscillating and a slow component

$$\vec{r}(t) = \vec{r_o}(t) + \vec{r_s}(t)$$
$$\left\langle \vec{r_o}(t) \right\rangle = 0$$
$$\left\langle \vec{r}(t) \right\rangle = \left\langle \vec{r_s}(t) \right\rangle = \vec{r_s}(t)$$

Employ the plasma's collective response, for example: laser wakefield acceleration

Use the ponderomotive force to excite plasma waves

Electrons are trapped and accelerated in the wake

$$kx = \frac{a_0^2}{8\gamma_0} sin2\phi$$

$$ky = -\frac{a_0}{\gamma_0}sin\phi$$

Figure-8 motion in some moving frame of reference no net energy coupling

$$\vec{f_p} \equiv m_e \frac{d}{dt} \left\langle \vec{v} \right\rangle = -\frac{e^2}{2m_e \omega^2} \nabla \left\langle \vec{E^2}(\vec{r_s}(t), t) \right\rangle$$
$$\xrightarrow[\gamma >>1]{} - m_e c^2 \nabla \sqrt{1 + \left\langle a^2 \right\rangle}$$

Focusing / defocusing beam: acceleration / deceleration

State-of-art:

Energies as high as 8 GeV

Reasonable control over spectral features

Only nanocolumb charge

DIRECT LASER ACCELERATION (DLA)

The ponderomotive force of the leading part of the laser pulse expels electrons and forms a slowly evolving quasi-stationary ion channel

The laser electric field transfers energy into transverse (betatron) oscillations

This energy is redirected by the magnetic field of the laser into the longitudinal direction

DIRECT LASER ACCELERATION (DLA)

- DLA has been observed in experiments for 25 years
- These experiments used low-Z targets (plastic foils or gas jets)
- DLA produce MeV-level, continuous electron spectrum
- Reported conversion efficiency of laser energy to electrons of over 25%
- An ideal method for generating a large number of photo-nuclear reactions

Malka, G., et al., Physical Review Letters, 79 (11), 2053 (1997). Malka, G., et al., Physical Review Letters, 78 (17), 3314 (1997). Gahn, C., et al., (1999). Physical Review Letters, 83 (23), 4772–4775. D. Giulietti, et al., Phys. Rev. E 64, 15402 (2001). D. Giulietti, et ak., Phys. Plasmas 9, 3655 (2002). Willingale, L., et al., New Journal of Physics, 15 (2), 025023 (2013). Rosmej O. N., et al, New Journal of Physics, 21 (4), 043044 (2019). Rosmej O. N., Plasma Phys. Control. Fusion 62, 115024 (2020). Shaw, J.L., et al., Sci Rep 11, 7498 (2021). Gorlova, et al. (2022). Laser Physics Letters, 19 (7), 075401. Gunther, et al., (2022). Nature Communications 2022 13:1, 13 (1), 1–13.

DLA: A LOW-Z VS. HIGH-Z PLASMA TARGET

We generated DLA electron beams from high-Z plasma targets (Au)
 For each plasma type, the plume's density profile was optimized to yield a beam with a maximal electron temperature

O DLA from Au plasma maintains Pukhov scaling, CH plasma does not.

THE DLA SETUP AT TEL-AVIV U.

Itamar Cohen

- Main pulse: 100-500 mJ / 25 fs
- **Parametric scan of:**
- Target thickness and composition
- © Pre-pulse energy
- © Pre- to main-pulse delay

For each shot we record:

- © Electron spectrum
- © Plume's density profile
- NF image of light punching through the plasma

SIMULATION

Talia Meir

- OUsing the EPOCH-2D code
- © Running on Lonestar6 (ranked world 13th supercomputer)
- Measured plasma plume profiles serve as initial inputs
- © Field ionization is implemented in the code

SIMULATION

For low-z targets, the target is depleted from all of its ionization electrons too early, resulting in inefficient DLA

ELECTRON AND NEUTRON YIELDS

Highest performance with $a_0 = 4.5$, 800 nm thick Au targets, pre-pulse of 1.9 mJ at t= -60 ns

>20% conversion efficiency from laser energy to E>0.5 MeV electrons

We used the electron beam to generate neutrons \bigcirc

1 cm thick ²³⁸U converter

3x10⁵ neutrons per shot (assuming a 4π distribution)

BUBBLES DOSIMETERS

Nuclear Photonics