

The TRIUMF UltraCold Advanced Neutron source and nEDM experiment

TUCAN TRIUMF Ultra Cold

Advanced

Neutron source

Second workshop on UCN and VCN Sources at ESS

Alexis Brossard May 10th, 2023 ESS, Lund

The TUCAN collaboration aims for measuring the neutron electric dipole moment. We use the Ramsey's method of separating oscillatory field.

$$\sigma_d = \frac{1}{2\alpha ET\sqrt{N}}$$

- α : Visibility
- E: Electric field strength.
- N: Number of neutron detected
- T: Free precession time

UCN are ideal for such measurement

Proton beamline and target

TRIUMF proton beams

H⁻ ions are accelerated by TRIUMF's main cyclotron (up to 520 MeV). Foils strip electrons and p⁺ can be extracted at selectable radii (and energies). Three beamlines can be fed with up to 120 μ A at a time.

Spallation target

The target is made of 5 blocks of tungsten Clade in tantalum and water cooled down 3 first blocks are 20 mm thick and the two last 30.

Temperature profile at the center of the target.

The target is attached to an arm and will be remotely placed in a 15 cm thick lead casket at the end of its lifetime

UCN production

TUCAN method for UCN production

Neutron moderation in room temperature D_20 and 20 K D_2

UCN production by phonon emission in superfluid Isopure ⁴He

TUCAN first prototype:

- First UCN on November 13, 2017
- 2 10⁴ UCN/s
- Decommissioned in 2019
- Validate components and simulation for the new source
- Gives first operational experience

First ultracold neutrons produced at TRIUMF S. Ahmed et al : DOI: 10.1103/PhysRevC.99.025503

TUCAN first prototype results:

First ultracold neutrons produced at TRIUMF S. Ahmed *et al* : DOI: 10.1103/PhysRevC.99.025503

TUCAN next source:

- 40x beam current
- 40x cooling power
- 3.5x production volume
- 800x UCN production
- 2nd UCN port for user facility

Neutron moderator optimization

Optimization took into account a range of engineering and safety requirements to increase the UCN production.

Initial simulation concentric, vertical cylinders, centered above the target.

Show that the liquid D_2 radial thickness is the most important parameter.

Optimizing neutron moderators for a spallation-driven ultracold-neutron source at TRIUMF, W. Schreyer et al: DOI: https://doi.org/10.1016/j.nima.2020.163525

Neutron moderator optimization

Two different options, vertical and horizontal to extract UCN from the converter through a UCN guide were tested. The two options show similar performances, the horizontal one was chosen as it is more mechanically feasible.

Optimizing neutron moderators for a spallation-driven ultracold-neutron source at TRIUMF, W. Schreyer et al: DOI: <u>https://doi.org/10.1016/j.nima.2020.163525</u>

Neutron moderator optimization

Several geometrical parameters tested and optimized:

-thickness of lead above target,

-thickness of heavy-water layer above target,

-horizontal offset between UCN-converter volume and liquid deuterium vessel -length of the liquid-deuterium vessel,

-horizontal offset between target and UCN-converter vessel,

-radius of the UCN-converter vessel,

-length of the UCN-converter vessel, and

-vertical offset between liquid-deuterium vessel and UCN converter Vessel

Converter vessel will be made of Aluminum Upgrade using Beryllium (+90% UCN density), AlBeMet or AZ80 (+30-50%) is possible.

Optimizing neutron moderators for a spallation-driven ultracold-neutron source at TRIUMF, W. Schreyer et al: DOI: https://doi.org/10.1016/j.nima.2020.163525

. . . .

Moderator vessel

Machining finished, preparing to start complicated assembly.

Superfluid-He converter vessel

- Machined, thin-walled AI domes to minimize neutron absorption and heat load
- UCN-reflective NiP coating: Measured UCN storage lifetime at LANL in 2021
 → higher loss rate than expected, but acceptable
- Superfluid-tight: extensive leak checking completed

Superfluid-He cooling

³He fridge

- Cooling power 10 W @ 1.1K
- Built & tested at KEK in Japan, shipped to TRIUMF in 2021
- Pumps arrived 2021 (8000 m³/h for ³He)
- To be installed and commissioned in the coming weeks.

HEX1 Heat exchanger

Two ideas were studied and tested:

Vertical fin HEX was selected

Cylindrical fin

Small prototype ready to be tested

Superfluid 4He thermal conductivity

Timeline:

Summer 2023: Helium cryostat commissioning, LD ₂ cryostat and gas system fabrication	Fall 2023: LD ₂ cryostat commissioning, tail section and moderator vessel fabrication	Winter 2024: Installation of the tail section and moderator	Summer 2024: UCN production	
		Cyclotron shutdown		

COMPARISON:

Option	Volume	PUCN	N UCN	Heat
	[liters]	[cm ⁻³ s ⁻¹]	[s ⁻¹]	[Watt]
	SD ₂ thin sla	ab in twister - loca	ation 1	
Fig. 5	1.81	$\textbf{3.1}\times\textbf{10}^{5}$	$5.6 imes10^8$	760
Fig. 6	1.75	$7.7 imes10^5$	$1.4 imes 10^{9}$	2910
Fig. 7	0.38	$1.3 imes 10^6$	$5.0 imes10^8$	560
Fig. 9	0.13	$1.7 imes10^6$	$2.2 imes 10^8$	520
	full SD ₂	in twister - locatio	on 1	
Fig. 10	48.2	$\rm 6.56\times10^{5}$	$1.32 imes 10^9$	39886
	SD ₂ thin s	lab in MCB - locat	tion 2	
Fig. 18a	0.91	$3.8 imes 10^4$	3.4×10^7	159
	He-II i	n MCB - location	2)	
Fig. 21	24.3	2160	$5.23 imes 10^7$	328
	He-II	in LBP - location	4)	
Fig. 24	58	369	$2.1 imes 10^7$	8
	He-II i	n beam - location	5	
in-beam (D4.3)	114	234	1.53 × 10 ⁷	
TUCAN	27		1.6 x 10 ⁷	10

nEDM experiment

Neutron EDM – experimental status

TUCAN METHOD:

- 120 kV/m electric field •
- 1 uT magnetic field ٠
- ~8.5 nT transverse field •
- Magnetically shielded room ٠

٠

Cesium magnetometry and Hg/Xe co-• magnetometry

(4) Spin Sensitive Analyzer

polarization

Magnetically shielded room under construction in the meson hall

Precession cell: UCN storage test

Precession cell: Electrical properties:

HV discharge testing of electrodes, insulators, coatings, comagnetometer gases.

Magnetometry

Hg comagnetometer prototype achieved 10s free precession, 1 pT resolution Goal: 10 fT

Operating 5 optical Cs magnetometers & 5 more on order

UCN detection

Scintillating stacks Lithium detector:

 $^{6}\text{Li} + n \rightarrow \alpha(2.05\text{MeV}) + t(2.73\text{MeV})$

The upper layer is 60 μ m thick depleted ⁶Li glass (0.01 %), and the lower layer is 120 μ m thick doped ⁶Li (95 %) glass. Ensure energy deposition in scintillating glass.

Fast signal 6 ns rise time 55 ns fall time allows for MHz detection. 89.7 % efficiency

CONCLUSION:

The TUCAN collaboration builds the next ultra cold neutron source with a production rate of 1.6 x 10⁷ n.s⁻¹

We aim for a 10⁻²⁷ ecm sensitivity for neutron electric dipole moment.

The source will also deliver UCNs to a second port that will be open to proposals from users worldwide.

First UCN production by next summer!

Thank you!

Collaboration meeting January 2023

