

Introduction to the HighNESS UCN/VCN source designs

Luca Zanini for the HighNESS consortium

Second workshop on UCN and VCN sources at ESS, Lund, 9-10 May 2023

The green part show the upgrade area

HighNESS is funded by the European Union Framework Programme for Research and Innovation Horizon 2020, under grant agreement 951782

HighNESS source, compared to main source should have:

- Higher intensity
- Colder spectrum

Ten years ago...

Potential opportunities for ESS:

- huge feeding guide for ex-pile UCN source
- optimization of cold beam spectrum with colder pre-moderator
- design of optimized in-pile UCN source

https://lpsc-indico.in2p3.fr/event/866

HighNESS is funded by the European Union Framework F Research and Innovation Horizon 2020, under grant agre

Superfluid-helium UCN sources concepts for the ESS?

Technical Design Report (TDR) design

M. Magan et al, Nuclear Instruments and Methods in Physics Research A729 (2013) 417–425

Beam extraction from TDR moderators (2013)HighNess

TDR: 2 identical moderators; beamports can look only to one moderator

lighNess

orem ipsum dolor sit amet, consec- tur adipiscing elit, sed do eiusmod empor incididunt ut labore et loize magna aliqua. Ut enim ad ainim verlam.	20	15	
JANUARY See Mo Tu We Th Fr Sa 4 5 6 7 8 9 10 1 12 13 15 16 17 16 19 20 21 22 23 24 25 26 27 28 29 30 31	See Mos Tu We Th Fr Sea 1 2.0 3.4 5.6 5.7 7.8 9.10 11 12 13 14 15 16.1 11 18 19 14 14 14 12 23 24 25 26 27 28	MARCH 50 70 We Fr Fr 50 1 2.0 2.4 5.6 6.7 8 9 10 11 12 13 14 15 16 11 18 19 20 12 12 12 23 24 25 26 27 28 29 30 31	MPRIL 5m Mo Tu We Tu Ta Sa A 5 6 7 8 9 10 11 12 13 15 16 17 13 4 12 13 145 16 11 11 12 13 14 12 13 15 16 17 16 10 11 12 13 15 16 17 22 23 24 25 26 27 28 29 30 25 26 27
MAY Su Mo Tu We Th Fr Sa 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	SUNE 50 M0 Tu We Th Fr Da 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 30 30 30 30 30	JULY Sur Mo Tu We Tr Fr Sur 5 d 7 8 9 10 11 2 3 4 5 d 7 8 9 10 11 1 11	AUGUST Sw Mo Tu We Th FF Sa 2 3 4 5 6 7 6 9 10 11 21 13 14 15 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20 31 24 25 26 27 28 29
SEPTEMBER See No Tu We Th Fr Ga 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30	Su Mo Tu We Th Fr Su 1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 16 17 11 12 12 14 15 16 17 11 12 23 24 12 23 24 25 25 27 28 29 30 31	See M0 Te We Th Fr See 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 15 12 22 22 24 25 25 27 28 29 20 20	DECEMBER 50 No 70 We Th Pr 50 1 2 3 4 5 6 7 8 0 10 11 12 3 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

I.u.cM

Protor

u.u.cM

I.u.cM

upper downstream cold Moderator

I.d.cM

u.d.cM

(Y. Bessler)

The choice to go for low-D moderators had a HighÑess profound impact on the design of the facility

TDR: 2 identical moderators; beamports can look only to one moderator

0

Framework Programme for er grant agreement 951782 Present design:

1 upper moderator; lower moderator to be defined each beamport can look to both moderators

In summary:

- Efficient neutron economy allowed for a more flexible and with a higher potential upgrade path of ESS, where a new source complementary to the main source can now be built.
- HighNESS is based on that, but relies also on
 - High power from the accelerator (like upper moderator)
 - Large beamport (more than upper moderator)
 - Use of moderator cooling block (novelty in HighNESS).

High-Intensity Cold Source

15

February

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

December

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

January

1 3 4 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 24 25 26 27 28 29

w Mo Tu We

We cannot reach high intensity with parahydrogen

L. Zanini et al. Nuclear Inst. and Methods in Physics Research, A 925 (2019) 33-52

(courtesy U. Odén)

UCN options

LOCATION

In-pile: inside target monolith *R* < 5.5 m In-beam: at *R* > 5.5 m

MATERIALS

Superfluid He Solid deuterium @ 5 K

The large beamport offers great opportunities for UCN

NNBAR solid angle: ~ 0.04 sr Typical neutron scattering solid angle: ~ 0.0006 sr Advantages for UCN: (e.g. nested mirrors, insert large source)

The Moderator Cooling Block is a "free"* location for an additional source

Fig. 6. *Left*: a CAD drawing of the twister and moderator cooling block, with part of the inner shielding for display. *Right*: horizontal view at the height of the lower moderator (courtesy R. Holmberg). The LD_2 moderator is placed inside the twister. A possible location of a secondary source inside the MCB is indicated by the dashed circle.

HighNESS is funded by the European Union Framework Programme *Requires handling in the hot cell not required for a standard MCB Research and Innovation Horizon 2020, under grant agreement 951, ___

Snapshot from UCN deliverable

some numbers have since improved

HighNESS is funded by the European Union Framework P
Research and Innovation Horizon 2020, under grant agree

Option	Volume	$P_{\rm UCN}$	Μ _{UCN}	Heat			
	[liters]	[cm ⁻³ s ⁻¹]	[s ⁻¹]	[Watt]			
SD_2 thin slab in twister - location 1							
Fig. 5	1.81	$3.1 imes 10^5$	$5.6 imes 10^8$	760			
Fig. 6	1.75	$7.7 imes10^5$	$1.4 imes 10^9$	2910			
Fig. 7	0.38	$1.3 imes10^6$	$5.0 imes10^8$	560			
Fig. 9	0.13	$1.7 imes10^6$	2.2× 10 ⁸	520			
full SD ₂ in twister - location 1							
Fig. 10	48.2	$6.56 imes10^5$	$1.32 imes10^9$	39886			
SD_2 thin slab in MCB - location 2							
Fig. 18a	0.91	$3.8 imes10^4$	$3.4 imes 10^7$	159			
He-II in MCB - location 2							
Fig. 21	24.3	2160	$5.23 imes10^7$	328			
He-II in LBP - location 4							
Fig. 24	58	369	$2.1 imes10^7$	8			
He-II in beam - location 5							
in-beam (D4.3)	114	234	1.53×10^{7}				

VCN options

A strong VCN source has been a dream for at least two decades

VCN: 1 location (twister); 2 materials: SD2 (+ nanodiamonds), clathrates hydrates

3 concepts:

Extraction from cold source

Hybrid LD2-SD2+ nanodiamonds

Dedicated VCN moderator

HighNESS is funded by the European Union Framework Programme for Research and Innovation Horizon 2020, under grant agreement 951782 HighNess

Use of nanodiamonds gives promising gains especially at large divergence angles

Extraction from cold source

Hybrid LD2-SD2+ nanodiamonds

- Use of NDs around cold moderator and at extraction channel will be tested at the Budapest moderator test facility
- Combined use of SD2 and nanodiamonds in the extraction channel give significant gains at the exit of the channel
- See N. Rizzi talk 14:40

Dedicated VCN moderator

- Full SD2 option
 - Seems very promising e.g. for SANS
 - B. Folsom 15:35
 - M. Bertelsen tomorrow 10:55
- First results on deuterated clathrate hydrates VCN source
 - Shuqi Xu 14*:45*

N. Rizzi et al, in preparation

Dedicated VCN moderator

- Full SD2 option
 - Seems very promising e.g. for SANS
 - B. Folsom 15:35
 - M. Bertelsen tomorrow 10:55
- First results on deuterated clathrate hydrates VCN source
 - Shuqi Xu 14*:45*

N. Rizzi et al, in preparation

Ferenc MezeiJournal of Neutron Research 24 (2022) 205–210

in order to be advantageous in SANS type of experiments, must therefore provide high intensity at wavelengths $\lambda > 10$ Å, that is above the presumed λ^{-5} dependence of the spectra of current cold moderators (which happens to be only well established in practice for neutron wavelengths below 10–20 Å).

Different, innovative, more sophisticated moderator designs might eventually even offer larger favorable deviation from the λ^{-5} dependence.

Dedicated VCN moderator

- Full SD2 option
 - Seems very promising e.g. for SANS
 - B. Folsom 15:35
 - M. Bertelsen tomorrow 10:55
- First results on deuterated clathrate hydrates VCN source
 - Shuqi Xu 14*:45*

Ferenc Mezei Journal of Neutron Research 24 (2022) 205–210

in order to be advantageous in SANS type of experiments, must therefore provide high intensity at wavelengths $\lambda > 10$ Å, that is above the presumed λ^{-5} dependence of the spectra of current cold moderators (which happens to be only well established in practice for neutron wavelengths below 10–20 Å).

Different, innovative, more sophisticated moderator designs might eventually even offer larger favorable deviation from the λ^{-5} dependence.

HighNESS is funded by the European Union Framework Programme for Research and Innovation Horizon 2020, under grant agreement 951782

N. Rizzi et al, in preparation

THANK YOU FOR PARTICIPATING TO THIS SECOND WORKSHOP

- Inputs from participants at the first workshop was invaluable
- We welcome more feedback, comments, collaborations from all workshop participants

