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The scattering law of a molecular system is

SQu)= . [dte™ T3 aa, opl-iQR,O)ewlioRr., ()

LI" vy
where R | (t) denotes the position of the atom v within the molecule |,

R Iv(t) = 4 T bv(t) + uv(t)

and can be written as the sum of inter (I #1)- and intra (I =1)-

molecular contributions (also referred to as the outer and inner terms,

respectively).



The outer and inner terms, for the intermediate scattering function are

7Qit)= <é§, a,a,, exp{—iQ.R,,(0)fexpliQ.R,,(t)} )+ “Outer”
22 davenl-iQROJeRioR, ()} ) e

Here the brackets denote the average of the time-dependent operators
over an equilibrium-distribution function in the full phase space of the

scattering system.

In terms of the usual coherent, b_.", and incoherent, b,", scattering
lengths for nuclei v,

a, =y +2(S,s)[S, (S, +1)]



Leaving aside for the moment the consideration of vibrational modes:

7"(@Q1)= Y (exp{-iQa 0)}exp(iQa, (t)}). Y (b exp-iQb,(0)lb, exp{iQb, (t)})

E7 v,V

ly (Q.1) u (Q.t)

XOUt (Q!t) =4 (bc )2 j02 (Qd/Z) . Id (Q’t)

7™ Q)= {expl-1Qa, 0)fexpliQa, (1)) 2, 2 A (3) ., (Q: 3, 3)e

IS (Q1t) VvV (Q,t)

1" Q1) = v(QiY) . 15 (Q.t)



1(Q,t) =4 b2 jp? (Qr/2) {I (Q,1)— s (Q,t)} + v(Q,t). |5 (Q,1)

Now, (must multiply everything by yVi*(Q,t) 1)

x(Q.t) = x(Q,0) + x(Q,t=0)

but because

5(Q0)=1 , 1(Q0)= [FQ,0)

1°(Q,0) = 4 b:? jo* (Qr/2) [F(Q)P +v(Q,0) - u(Q)

within the Incoherent Approximation:

1(Q,t #0) = I(Q,t #0)

x"(Q.1) = v(Q.) . Is (Q.1)




OLD MODEL

The old calculations were performed according to:

*(Q,0) =  4b.2j%2(Qr/2) |F(Q)? %®(Q,0) Convent.El.Coh

+ 2 (1+0a) b? ¥*(Q,0) Total El.Incoh

(a = Y for 0-D2, - 2 for p-D2, 0 for n-D2)

1 "e(Q,1) = v(Q,1) . I (Q,1) . xP(Q,1) Total Inelast.



NEW MODEL

Convent.El.Coh Convent.El.Incoh

N\ /

S*(Q.0) = [4 be? jo? (Qd/2) [F(Q)P + 2 b +

+ Zﬁid jo (Qd) + 2 be? {1+ jo (Qd)- 2 jo* (Qd/2)} e

Spin Correlation \ A structure

Si”e|(Q,03) - b02 j02 (Qd/Z) {Slph(Q,m) - S, 1p@~ Vorot(Q,(D) ® SS(Q,(D) ] e2W

N

Correction to 1ph IA Convent.Inel.Incoh
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Marked terms: not included in standard NJOY's algorithm,
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CORRECTION TO THE ONE-PHONON INCOH. APPROX.

At cold and very cold neutron energies, the total inelastic cross section for sD2 at low
temperatures will be dominated by the lattice one-phonon upscattering processes, as
there are no rotational nor vibrational excitations thermally or collisionally able to
participate. We obtain, for ortho-deuterium under those conditions:

S"N(Q,0) = [4 be? jo* (Qr/2) {S™PN(Q,0) — SsP(Q,w)} +

+ {2 (bc? + bi?) + (2bc? + Y2 bi?) jo( Qd)} SsP(Q,w)] e2W

and in the limit of very small energy and momentum transfer:

SnelM{Q,w}—0) = 4 be? SPN(Q,m) + 5/2 b Ss PN(Q,m)

The application of the IA in these Egs. means replacing S™"(Q,®) by Ss P"(Q,).



It is convenient to define the ratio of the coherent and incoherent one-phonon scattering
functions:
3S1(Q,0) = S™(Q,») — Ss **"(Q,»)
The ratio {8S? / Ss P}t derived from the exact calculations for solid 0-D2 at 0.33 peV as a
function of temperature (Liu et al) can be well approximated by
{6St/Ss Pt ~-1.19 + 5 102 T(K) - 7.3 10* T(K)?, T <16K
Besides the exact procedure that involves a MC sampling of the dispersion relations over the
appropriate phase space to evaluate the coherent one-phonon term S"(Q,), it seems
plausible to approximate
8S1(Q,w) = S¥(Q,m) — Ss PN(Q,w) ~ {8S* / Ss 1P}t . Ss P(Q,w)
so that

S"el(Q,m) = [4 be? jo? (Qr/2) {8S / Ss Pt . SsPN(Q,w)+ Vo™(Q,0) ® Ss(Q,w) | e2W
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At low momentum transfer and temperatures < 1 K, neutron scat-
tering at low energies from superfluid 4He is dominated by the
collective phonon-roton mode.

h20Q?
oM

14

—
N

-
o

Ed FE] EXL KT EX T RET BT LS X & d [T L4
I | | I | |

Energy ® (meV)
(0] o]

N
|
e
S

L \
---]. Tl R FE | I I\L L -l\ | § =~ \1 I I 1 l Jim ] I 1 J5 ) \I
0 1 2 3 4 5

Wave vector Q (A1)

T

T
N~

S(Q,w) of superfluid 4He as a function of
wave vector and energy transfer, measured

at T <100 mK
K. Beauvois et al., Phys.Rev. B 97, 184520 (2018)



This unique property makes superfluid “He, in addition to it's
zero absorption cross section and limited up-scattering due to
the low temperature, an attractive option as a source of ultra-
cold neutrons (UCNS) at neutron scattering facilities.

Dispersion relation & (Q) of the single excitations

The primary mechanism for the production of
UCNSs is characterized by a downscattering
process at the crossing point between a free
neutron and the phonon-roton dispersion
curve, which happens around a neutron
energy of 1meV.
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At temperatures below T = 1.3 K, the neutron scattering from superfluid “He can be readily
separated into clear contributions due to single- and multi-phonon excitations, represented by

S(Q,w) = Ss(Q,w) + 5,(Q,w)

where S¢(Q, w) and and S,,(Q, w) are the scattering functions for single-phonon excitations and
for multi-phonon excitations, respectively(*)

(*) A. Miller, D. Pines, P. Noziéres, Phys.Rev. 127, 1452 (1962)



For the single-excitation term in this range we have used a Lorentzian of the form

Z(Q) N'Q)
T (hw —Twy(Q))? + T(Q)?

Ss(Q,w) =

where haw,(Q) is the energy of the single-phonon excitations and (Q) is the halfwidth at half
maximum and depends on the temperature of the liquid. Z(Q) is the single-phonon structure
factor that measures its intensity.
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By denoting S #X°(w) as the integral over Q of the experimental dispersion curve, S;#P(Q,w), the
phonon weighted frequency distribution can be calculated by

6

54

hw Aw 4
— T — exXp
p(w) = [~ 1]SPP(w) .
The multiphonon term of the total scattering function, S ij P
applying the Skdéld approximation, is then ho (MeV)

Q
Vu(@)H(Q)

With this definition, and the form of S.(Q,w), the total scattering function S(Q,w) will satisfy the
first Sum Rule

7w)

Sar(Q.w) = H(Q)S37'(

S(Q)Z/ S(Q,w)dw  =Z(Q) +H(Q)

— OO




As long as H(Q) /

—5(Q)

H(Q) =3(Q) - Z(Q) 2] [ha)

0.8 4

where both structure factors, S(Q) and Z(Q),
are measured quantities. _
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The formalism has been coded into a custom version of the LEAPR module of NJOY2016 . The
input to the calculations include the phonon-roton dispersion curve, the structure factors, the
weighted frequency distribution, the effective mass function, and a normalizing function for the
incomplete phonon expansion, which is calculated internally.
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THE SCATTERING FUNCTION S(Q, o)

Calculated scattering kernel at 1.3 K. The red line is the dispersion curve of a free neutron.
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S(Q, w)[mev™!]

Dynamic structure factor at 1.3K convoluted with an instrument resolution function
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ULTRA COLD NEUTRONS PRODUCTION
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CONCLUSIONS

A new scattering kernel to describe the interaction of slow neutrons with

solid Deuterium _has been developed.

The main characteristics of this molecular solid are contained in the
formalism, including dynamical aspects related to:
e the lattice’s density of states,
e the Young-Koppel guantum treatment of the rotational motion,
e the exact treatment of the one-phonon IA in the inelastic term,
e the internal molecular vibration.
The elastic processes involving coherent and incoherent contributions
are also fully described, as well as the spin-correlation effects caused

by the coupling of intrinsic and rotational angular momenta.



We have developed a new model for the description of superfluid “He at low

temperatures and programmed it into a custom version of NJOY2016 to produce

thermal-scattering data.

The model includes an exact description of the phonon-roton dispersion curve
and a multi-phonon component, and we have shown that it reproduces well

available measured cross-section and UCN production data.

The current model can be used to create input that can be used together with
NCrystal, either stand-alone or coupled together with a Monte-Carlo code, for

calculations of UCN production from “He sources at low temperatures.
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