

Second Workshop on UCN and VCN Sources at ESS

SD₂ **UCN Source in** the twister

Outline of this presentation

- 1. SD_2 in the Twister
- 2. Thin-slab external converter
- 3. Cylindrical 3-opening design
- 4. Full SD₂ as primary moderator
- 5. Scenarios and conclusions

SD₂ in the Twister

• The rationale behind this concept is to maximize the cold flux delivered to the UCN converter

4

Calculating the UCN production

- MCNP does not transport UCNs
- We calculated the cold flux and multiplied it by the UCN production cross-section
- The cross-section was calculated from a dynamical scattering function extracted from the IN4 experiment
- More on this in the next talk

Thin-slab UCN converter

- 24 x 40 x 2 cm³ SD₂ converter @ 5K (1.8 L)
- Al vessel with 2 mm walls
- $P_{UCN} = 3.07E+5 UCN/cm^3/s$ Heat-load = 760 W

 $P_{UCN} = 4.70E+5 UCN/cm^3/s$ Heat-load = 1 kW

Dedicated cold moderator

- Optimization of the LD₂ moderator with Dakota
- Paramters: width, depth and position of the moderator
- SD₂ converter is fixed
- Best case: 40 x 16 x 24 cm³ and a 4 cm center shift

 $P_{UCN} = 7.72E+5 UCN/cm^{3}/s$ Heat-load = 2.9 kW

No need of large volumes if close to the hot spot of cold neutron production

Reentrant hole design

- 2-cm thick SD₂ converter @ 5K at the bottom of a 15 x 15 x 15 cm³ reentrant hole
- This 0.38 L converter produces a P_{UCN} = 1.31E+6 UCN/cm³/s
- The production rate though is lower than the previous case, due the smaller volume
- The total prompt heat-load is 560 W, also lower

Essential to optimize the reentrant hole depth to account for both openings

8

Activation of ²⁷Al

 Neutron activation of ²⁷Al, and subsequent decay of ²⁸Al, contributes to the delayed heat-load on the converter

Estimation of the saturation activity of ²⁸AI (FM card)

- Decay products add a contribution up to almost
 30% of the heat in the Al vessel, which in turn represents 30% of the total heat-load. So, it is not negligible
- The contribution in the SD₂ cell is approximately 4%, mainly from the surrounding Al vessel

3-in-1 moderator

- Cylindrical moderator 45 cm diameter
- 3 openings
 - 1. 24x40 NNBAR opening with flat surface and Be filter
 - 2. 10x10 UCN opening with a deep reentrant hole and a thin-film SD_2 moderator at the bottom
 - 3. 15x15 neutron scattering opening

```
Volume = 0.13 L

P_{UCN} = 1.74E+6 UCN/cm<sup>3</sup>/s

Heat-load = 520 W
```


Optimization 3-in-1 moderator

- Competition for the cold neutron hotspot once again
- Optimizing the reentrant hole depths and the Be thickness for the P_{UCN}
- Huge loss on the neutron scattering opening
- need of a wider optimization effort, that considers more parameters and both NNBAR and WP7 FOMs

Volume = 0.07 L $P_{UCN} = 2.34E+6 UCN/cm^{3}/s$ Heat-load = 550 W

SD₂ as primary moderator

- SD₂ can be used for UCN production
- 48.2 L of SD₂ @ 5 K
- UCN could be extracted from the last 2 cm on the NNBAR side
- No cooling structure should be put here

```
Volume= 48.2 L
```

 P_{UCN} in the last 2 cm = 9.13E5 UCN/cm³/s Heat-load = 40 kW

> Production of unprecedented VCN intensity for the future of ESS

UCN scenarios

 The UCN program starts after the NNBAR experiment, and minimal to no changes in the LD₂ moderator are foreseen

- Independent from the LD₂ source
- Be filter could be removed for higher performances
- Possible lack of space to accommodate the cooling infrastructure within the predesigned cold moderator frame

- The UCN program starts after the NNBAR experiment, and a second-generation cold moderator is foreseen
- Design not too far from the first generation
- optimization process of the box moderator will now include one of the FOM for UCN production
- The lack of space for the cooling infrastructure is still an issue, even with a slightly lower heat-load, but the redesign process could take these constraints into account to find new solutions

- The UCN program runs together with the NNBAR experiment, which means that a major shift in the design is needed.
- Cylindrical shape allows for a third opening
- Preliminary simulations have shown that the losses for NNBAR and WP7 are far from being crippling
- This design has many parameters and three figure of merits, so one should expect a long and complex optimization process

- Large SD₂ crystal that could serve the NNBAR experiment, but most likely after
- High VCN intensity
- UCN "for free" produced in the last centimeters
- This design is the most challenging of all both in terms of design and engineering

Conclusion

- All the designs presented have their strengths and their limitations
- · Some of the ideas are challenging

	SD ₂ Volume [L]	$P_{\rm UCN}$ $\left[{\rm n/s/cm^3} ight]$	Й _{UCN} [n/s]	Heat-load [W]	WP7 FOM [n/s/sr]	NNBAR FOM [nŲ/s/sr]
Baseline + UCN	1.81	$3.07 imes 10^5$	$5.56 imes 10^8$	760	$\textbf{3.23}\times \textbf{10}^{\textbf{15}}$	-
No Be filter + UCN	1.81	4.70×10^5	8.51×10^{8}	1000	$\textbf{3.06}\times\textbf{10}^{\textbf{15}}$	-
Optimized UCN-only	1.75	$7.72 imes 10^5$	$1.35 imes 10^9$	2910	-	-
Reentrant Hole	0.38	$1.31 imes 10^{6}$	$5.03 imes 10^8$	560	$\textbf{2.81}\times \textbf{10}^{\textbf{15}}$	-
Optimized depth	0.38	$\rm 1.63\times 10^{6}$	$\textbf{6.26}\times \textbf{10}^{8}$	730	$\textbf{2.28}\times\textbf{10}^{\textbf{15}}$	-
Optimized size	0.007	$2.41 imes 10^{6}$	$1.64 imes 10^7$	28	$\rm 2.96\times10^{15}$	-
3-openings cylinder	0.13	$1.74 imes 10^{6}$	$2.22 imes 10^8$	520	$2.84 imes 10^{15}$	$2.33 imes 10^{17}$
Optimized cylinder	0.07	$\rm 2.34\times10^{6}$	$1.66 imes 10^8$	550	$\textbf{2.33}\times \textbf{10}^{\textbf{15}}$	$\rm 2.30\times10^{17}$
Full SD ₂ moderator	48.2	$6.56 imes 10^5$	$1.32 imes 10^9$	39886	-	-

The future of the ESS user-program CAN be UCN, and, despite the challenges, the in-twister option WILL provide unprecedented intensity

Thank you for the attention