

Second Workshop on UCN and VCN Sources at ESS

SD₂-based VCN converter

Outline of this presentation

- 1. The idea of an SD₂-based VCN converter
- 2. Nanodiamonds in MCNP
- 3. Experimental benchmark
- 4. Converter design at ESS
- 5. Comparison with other VCN options

SD₂-based VCN converter

- Idea proposed by Valery Nesvizhevsky at the first workshop [1]
- VCN will improve the sensitivity for $n \bar{n}$ searches at the ESS
- A dedicated solid-deuterium VCN converter with a reflector was proposed as source
- The material for the reflector would be fluorinated nanodiamonds (F-DND)
- One can accommodate CN, VCN and UCN energy ranges in the same neutron guide

¹Nesvizhevsky, Valery. 'Why Very Cold Neutrons Could Be Useful for Neutron-antineutron Oscillation Searches'. 1 Jan. 2022 : 223 – 227

Nanodiamonds in MCNP

Benchmark experiment @ PF2

S.M. Chernyavsky et al. https://doi.org/10.1063/5.0124833

Results from the experiment

Results from the calculations

Results from calculations

VCN converter at ESS

VCN converter at ESS – ideal case

VCN extraction

Preliminary study

VCN extraction optimization

	Lower bound [cm]	Starting point [cm]	Upper bound [cm]
1.	1	5	20
2.	0.1	2	5
3.	0.1	1	5

Gains over the baseline (all angles)

Gains over the baseline (small angles)

Current spectrum at the exit of SD2

Best case

Energy groups [Å]	λ>40	20<λ<40	4< λ<1 0
Current @ BP [n/s]	1.17E+12	1.57E+12	3.32E+13
Ratio to Baseline	47	3	0.4

VCN converter at ESS – realistic option

Specifications 22 x 38 x 18 cm³ SD₂ converter @ 5 K 2 mm Al vessel @ 5K 2 cm ND reflector on the sides 0.55 cm ND facing the cold moderator 2 m0.55m Al external case @ 293K 1 mm Al internal case @ 293K 5 mm vacuum gap Total heat-load: 2.5 kW

Energy groups [Å]	λ>40	20<λ<40	4< λ<10
Current @ BP [n/s]	6.46E+10	5.36E+11	3.22E+13
Ratio to baseline	2.6	1.1	0.36
Ratio to ideal case	0.05	0.34	0.97

VCN converter at ESS – no Be filter

Specifications 22 x 38 x 18 cm3 SD2 converter @ 5 K 2 mm Al vessel @ 5K 2 cm ND reflector on the sides 0.55 cm ND facing the cold moderator 2 mm Al external case @ 293K 1 mm Al internal case @ 293K Total heat-load: 3 kW

Energy groups [Å]	λ>40	20<λ<40	4< λ <10
Current @ BP [n/s]	7.79E+10	1.57E+12	3.32E+13
Ratio to baseline	3.1	1.4	0.38
Ratio to Be filter	1.2	1.3	1 1

VCN converter at ESS – closer to cold source

Specifications and parameters
22 x 38 x 20 cm³ SD₂ converter @ 5 K
2 mm Al vessel @ 5K
2 cm ND reflector on the sides
1.25 cm ND facing the cold moderator
11 cm insertion in LD₂ vessel (fixed)
Total heat-load: 5.8 kW

Energy groups [Å]	λ>40	20<λ<40	4< λ<10
Current @ BP [n/s]	1.42E+11	1.20E+12	5.69E+13
Ratio to baseline	5.7	2.5	0.6
Ratio to Be filter	2.2	2.2	1.8

Comparisons with Full SD2

- Full SD₂ VCN source studied within HighNESS (see next presentation)
- Our best performing VCN source so far
- ND extraction added for fair comparison

Energy groups [Å]	λ>40	20<λ<40	4< λ<1 0
Current @ BP [n/s]	6.33E+11	3.46E+12	1.25E+14
Ratio to Best Converter	4.5	2.9	2.2

Conclusions

- The idea presented in the previous workshop is promising
- It potentially needs way less R&D than our best VCN source so far, making it a good option to run together with NNBAR (not with the current design of the optics)
- It is a **flexible design**: many configurations are possible and can be adapted
- Limited computational model for ND may lead to **underestimate** the gains
- Engineering details are crucial to preserve the ideal gains

Thank you