

Full Solid Deuterium VCN source for ESS

Ben Folsom

9 May 2023

The baseline cold source

The more SD₂ the better

SD₂ VCN moderator

- 45 x 49 x 24 cm³ box shape
- 50 L of solid-D₂ (SD2) at 5 K
- Reflector layer made of nanodiamond (ND) 5 mm thickness
- 10-cm Be filter at 20 K on the NNBAR side

Why nanodiamonds?

- Nanodiamond Powder samples showed efficient reflector properties for very cold neutrons (VCN) up to 10^{-4} eV [1].
- Good quasi-specular reflectivity for cold neutrons [2]
- Nanoparticles provide a sufficiently large cross-section for elastic scattering on a spatial scale comparable to VCN wavelengths
- Carbon has a low absorption cross-section
- Relatively cheap to fabricate
- Fairly radiation tolerant

Ref [3]

Why nanodiamonds?

HighNess Performance

LD2: VCNs go as a Maxwellian tail with λ^{-5} dependence

SD2 w/ND: Approximately $\lambda^{-3.5}$ dependence

Gains for SD2 over LD2 Baseline

	$> 40 \text{\AA}$	10 Å to 40 Å	4 Å to 10 Å	2.5 Å to 4 Å
N.S.	19.0	2.4	1.2	0.7
NNBAR	14.3	2.3	1.3	0.6

Spectra at 2 m, Be Filter Effects

WP7 (Scattering Side)	λ>40Å		10Å<λ<40Å		4Å<λ<10Å		2.5Å<λ<4Å	
n/nps @ 2m	Value	Rel.err.	Value	Rel.err.	Value	Rel.err.	Value	Rel.err.
	7.56E-07	0.3835	2.11E-05	0.0349	1.32E-04	0.0272	6.06E-05	7.49E-0
Gain over LD2	34.3		2.4		1.1		0.7	
Gain over SD2 w/Be filter	1.4		1.0		0.9		1.0	
NNBAR Side	λ>-	40Å	10Å </td <td>\<40Å</td> <td>4Å<λ</td> <td><10Å</td> <td>2.5Å<</td> <td><λ<4Å</td>	\<40Å	4Å<λ	<10Å	2.5Å<	<λ<4Å
n/nps @ 2m	Value	Rel.err.	Value	Rel.err.	Value	Rel.err.	Value	Rel.err.
	2.60E-05	0.0899	1.15E-03	0.0048	6.81E-03	0.0038	3.16E-03	0.010
Gain over LD2 Baseline	16.6	5	2.0		0.9		<mark>1.9</mark>	
Gain over SD2 w/Be Filter	1.2		0.9		0.8		<mark>3.2</mark>	

- Without the beryllium filter, the 4–10Å range is reduced by at least 10%. This is a critical range for the NNBAR FOM.
- The filter also increases flux on the scattering side by 5% across the cold and very cold range.

Pulse characteristics

How do we plan to cool it?

For LD2, flow guides and beryllium-filter support pillars are required which add approximately 4% aluminum to the moderator volume. For SD2, the required heat extraction to keep well below the ~17K melting point cannot be achieved with conventional techniques. A strong option is metallic-foam heatsinks (3–15% per volume).

For preliminary neutronics simulations, we treat both of these cases as simple mixtures (emulsions) with their relative moderator materials.

How do we plan to cool it?

- Preliminary calculations show that it is possible to cool the SD2 volume within the ESS environment at 2 MW beam power by use of aluminum foam and conventional liquid-He channeling.
- Beryllium performs better in terms of both self-heating and neutronics, further testing is needed to determine its viability at 5 MW, with a heatload of ~40 kW.

How do we plan to cool it?

- Preliminary calculations show it is possible to cool the SD2 volume within the ESS environment at 2 MW beam power by use of aluminum foam and conventional liquid-He channeling
- Beryllium performs better in terms of both self-heating and neutronics, further testing is needed to determine its viability at 5 MW.

		Al %	$> 40 \text{\AA}$	$10\mathrm{\AA}$ to $40\mathrm{\AA}$	$4\mathrm{\AA}$ to $10\mathrm{\AA}$	$2.5\mathrm{\AA}$ to $4\mathrm{\AA}$
-	WP7	15%	3	0.95	0.67	0.57
		15/7~%	4.73	1.54	0.93	0.63
-		15%	1.9	0.96	0.71	0.48
	ININBAR	15/7~%	4.74	1.50	0.94	0.54

	Be $\%$	$> 40 \text{\AA}$	$10\mathrm{\AA}$ to $40\mathrm{\AA}$	4\AA to 10\AA	$2.5\mathrm{\AA}$ to $4\mathrm{\AA}$
WP7	15%	11.9	2.12	1.10	0.64
	15/7~%	16	2.36	1.21	0.70
NNBAR	15%	10.45	1.93	1.10	0.56
	15/7~%	14.2	2.26	1.21	0.60

Conventional vs. SLS (3D printed) foams

- SLS has better heat extraction in some applications. May be prohibitively expensive with beryllium due to toxicity measures. Additionally, the outer surface is left porous after fabrication.
- With conventional foaming-agent production, density and porosity can be tuned homogeneously. This is a more mature technology and may be more feasible for beryllium.

[6]

Cooling Channel Tests

Inserting a single aluminum-walled liquid-helium pipe through the center dramatically improves cooling capability and has negligible impact on neutronics performance.

(WP7)
------	---

	λ>40Å		10Å<λ<40Å		4Å<λ<10Å	
n/nps @ 2m	Value	Rel.err.	Value	Rel.err.	Value	Rel.err.
	6.55E-07	0.0777	2.53E-05	0.0042	1.57E-04	0.0035
Gain over Baseline	26.4		2.3		1.1	
Gain over 0% Al SD2	1.0		1.0		1.0	

VCN production with SD₂ temperature

- Early studies show a limit of 10 K is optimal to avoid cracks in the SD2 crystal.
- Thermal conductivity for SD2 drops by a factor of 30 from 5K to 12K [7]. This may present engineering constraints.

(WP7 Side)

Conclusions

- We found that solid-D₂ could be used to build a high-intensity VCN source.
- Nanodiamonds are almost transparent in transmission for cold neutrons, but at lower energies they show optimal properties as reflector material.
- Nanodiamond fabrication for VCNs has improved in the last few years; nanodiamond reflector performance is thus likely to exceed our current estimates.
- Cooling is going to be challenging, but:
 - 1. A VCN source could operate at higher temperature than 5 K
 - 2. We should not give up on the possibility to innovate
- In any case, solid-D₂ could play a role in the future of the ESS. With the right effort and expertise, there is fertile ground for designing the first high-intensity VCN source.

Thank you for your attention

HighÑess References

- 1. Teshigawara, M., Y. Tsuchikawa, G. Ichikawa, S. Takata, K. Mishima, M. Harada, M. Ooi, et al. "Measurement of Neutron Scattering Cross Section of Nano-Diamond with Particle Diameter of Approximately 5 nm in Energy Range of 0.2 MeV to 100 MeV." *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* 929 (June 11, 2019): 113– 20.
- 2. Nesvizhevsky, V. V., E. V. Lychagin, A. Yu. Muzychka, A. V. Strelkov, G. Pignol, and K. V. Protasov. "The Reflection of Very Cold Neutrons from Diamond Powder Nanoparticles." *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* 595, no. 3 (October 11, 2008): 631–36.
- 3. Granada, J. Rolando, J. Ignacio Márquez Damián, and Christian Helman. "Studies on Reflector Materials for Cold Neutrons." *EPJ Web of Conferences* 231 (2020): 04002.
- 4. Cubitt, R., E. V. Lychagin, A. Yu. Muzychka, G. V. Nekhaev, V. V. Nesvizhevsky, G. Pignol, K. V. Protasov, and A. V. Strelkov. "Quasi-Specular Reflection of Cold Neutrons from Nano-Dispersed Media at above-Critical Angles." *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* 622, no. 1 (October 1, 2010): 182–85.
- 5. Borovinšek, M., et al. "Computational reconstruction of scanned aluminum foams for virtual testing." J. Serbian Soc. Comput. Mech 2 (2008): 16-28.
- 6. C. Hutter, D. Büchi, V. Zuber, Ph. Rudolf von Rohr. Heat transfer in metal foams and designed porous media, Chemical Engineering Science, Volume 66, Issue 17, Pages 3806-3814 (2011).
- 7. Anghel, A., Bailey, T.L., Bison, G. et al. Solid deuterium surface degradation at ultracold neutron sources. Eur. Phys. J. A 54, 148 (2018).