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The baseline cold source
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The more SD2 the better
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SD2 VCN moderator

• 45 x 49 x 24 cm3 box shape
• 50 L of solid-D2  (SD2) at 5 K
• Reflector layer made of 

nanodiamond (ND) 5 mm thickness
• 10-cm Be filter at 20 K on the              

NNBAR side 
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Why nanodiamonds?
• Nanodiamond Powder samples showed efficient reflector properties for very cold 

neutrons (VCN) up to 10!" eV [1]. 

• Good quasi-specular reflectivity for cold neutrons [2]

• Nanoparticles provide a sufficiently large cross-section for elastic scattering on a spatial 
scale comparable to VCN wavelengths

• Carbon has a low absorption cross-section

• Relatively cheap to fabricate

• Fairly radiation tolerant

Ref [3]
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Why nanodiamonds?
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Performance

@5 MW

Gains for SD2 over LD2 Baseline
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LD2: VCNs go as a Maxwellian tail with
𝜆!# dependence

SD2 w/ND: Approximately  𝜆!$.# dependence



Spectra at 2 m, Be Filter Effects
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WP7 (Scattering Side) 
n/nps @ 2m

λ>40Å 10Å<λ<40Å 4Å<λ<10Å 2.5Å<λ<4Å
Value Rel.err. Value Rel.err. Value Rel.err. Value Rel.err.

7.56E-07 0.3835 2.11E-05 0.0349 1.32E-04 0.0272 6.06E-05 7.49E-02
Gain over LD2 34.3 2.4 1.1 0.7
Gain over SD2 w/Be filter 1.4 1.0 0.9 1.0

NNBAR Side
n/nps @ 2m

λ>40Å 10Å<λ<40Å 4Å<λ<10Å 2.5Å<λ<4Å
Value Rel.err. Value Rel.err. Value Rel.err. Value Rel.err.

2.60E-05 0.0899 1.15E-03 0.0048 6.81E-03 0.0038 3.16E-03 0.0104
Gain over LD2 Baseline 16.6 2.0 0.9 1.9
Gain over SD2 w/Be Filter 1.2 0.9 0.8 3.2

• Without the beryllium filter, 
the 4–10Å range is reduced 
by at least 10%. This is a 
critical range for the NNBAR 
FOM.

• The filter also increases flux 
on the scattering side by 5% 
across the cold and very 
cold range.



Pulse characteristics

𝜆 > 40 Å
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For LD2, flow guides and beryllium-filter 
support pillars are required which add 
approximately 4% aluminum to the moderator 
volume.

For SD2, the required heat extraction to keep well 
below the ~17K melting point cannot be achieved 
with conventional techniques. A strong option is 
metallic-foam heatsinks (3–15% per volume).

For preliminary neutronics simulations, we treat both of these cases as simple mixtures (emulsions) with their 
relative moderator materials.
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How do we plan to cool it? 



How do we plan to cool it? 
• Preliminary calculations show that it is 

possible to cool the SD2 volume within 
the ESS environment at 2 MW beam 
power by use of aluminum foam and 
conventional liquid-He channeling.

• Beryllium performs better in terms of both 
self-heating and neutronics, further 
testing is needed to determine its viability 
at 5 MW, with a heatload of ~40 kW.
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Al % > 40 Å 10 Å to 40 Å 4 Å to 10 Å 2.5 Å to 4 Å

WP7
15% 3 0.95 0.67 0.57

15/7 % 4.73 1.54 0.93 0.63

NNBAR
15% 1.9 0.96 0.71 0.48

15/7 % 4.74 1.50 0.94 0.54

Be % > 40 Å 10 Å to 40 Å 4 Å to 10 Å 2.5 Å to 4 Å

WP7
15% 11.9 2.12 1.10 0.64

15/7 % 16 2.36 1.21 0.70

NNBAR
15% 10.45 1.93 1.10 0.56

15/7 % 14.2 2.26 1.21 0.60
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How do we plan to cool it? 
• Preliminary calculations show it is possible

to cool the SD2 volume within the ESS 
environment at 2 MW beam power by use 
of aluminum foam and conventional 
liquid-He channeling

• Beryllium performs better in terms of both 
self-heating and neutronics, further 
testing is needed to determine its viability 
at 5 MW.
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Conventional vs. SLS (3D printed) foams

• SLS has better heat extraction in 
some applications.  May be 
prohibitively expensive with 
beryllium due to toxicity measures. 
Additionally, the outer surface is left 
porous after fabrication.

• With conventional foaming-agent 
production, density and porosity 
can be tuned homogeneously. This 
is a more mature technology and 
may be more feasible for beryllium.
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Inserting a single aluminum-walled liquid-helium 
pipe through the center dramatically improves 
cooling capability and has negligible impact on 
neutronics performance.

n/nps @ 2m
λ>40Å 10Å<λ<40Å 4Å<λ<10Å

Value Rel.err. Value Rel.err. Value Rel.err.
6.55E-07 0.0777 2.53E-05 0.0042 1.57E-04 0.0035

Gain over Baseline 26.4 2.3 1.1
Gain over 0% Al SD2 1.0 1.0 1.0

Cooling Channel Tests
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(WP7)



VCN production with SD2 temperature

(WP7 Side) 15

• Early studies show a limit of 
10 K is optimal to avoid 
cracks in the SD2 crystal.

• Thermal conductivity for 
SD2 drops by a factor of 30 
from 5K to 12K [7]. This may 
present engineering 
constraints.



Conclusions
• We found that solid-D2 could be used to build a high-intensity VCN source.

• Nanodiamonds are almost transparent in transmission for cold neutrons, but at lower
energies they show optimal properties as reflector material.

• Nanodiamond fabrication for VCNs has improved in the last few years; nanodiamond
reflector performance is thus likely to exceed our current estimates. 

• Cooling is going to be challenging, but:

1. A VCN source could operate at higher temperature than 5 K

2. We should not give up on the possibility to innovate

• In any case, solid-D2 could play a role in the future of the ESS. With the right effort and 
expertise, there is fertile ground for designing the first high-intensity VCN source.
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Thank you
for your attention
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